Dynamic Behaviors of Liquid in Partially Filled Tank in Short-term Microgravity View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-12

AUTHORS

Ji-Cheng Li, Hai Lin, Jian-Fu Zhao, Kai Li, Wen-Rui Hu

ABSTRACT

The oscillation of liquid/gas free surface in a partially filled storage tank caused by an abrupt drop of gravity level is of critical importance for the fluids management in space. In present study we investigate the dynamic behavior of free surface in tank models (tubes) using water as the working medium utilizing the Drop Tower Beijing, which can provide a 3.6s short-term microgravity condition. Meanwhile, the corresponding numerical simulation using volume of fluids (VOF) methods was carried out. It is shown that the dynamic behavior of free surface, which belongs to the typical phenomenon of capillary flow, is affected by the properties of working medium and the geometry and surface properties of the storage tank (especially the contact angle) jointly. The numerical simulation could capture the major characteristic oscillation frequency of free surface revealed by experiment. The oscillation frequency of free surface increases with the increasing air fraction and remains nearly constant at large air fraction. For the same air fraction, the oscillation frequency significantly increases with the decreasing tank diameter. More... »

PAGES

1-8

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s12217-018-9642-5

DOI

http://dx.doi.org/10.1007/s12217-018-9642-5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1106014118


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0915", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Interdisciplinary Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Chinese Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.410726.6", 
          "name": [
            "Key Laboratory of Microgravity (National Microgravity Laboratory), Institute of Mechanics, Chinese Academy of Sciences, 100190, Beijing, China", 
            "School of Engineering Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Ji-Cheng", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Mechanics", 
          "id": "https://www.grid.ac/institutes/grid.458484.1", 
          "name": [
            "Key Laboratory of Microgravity (National Microgravity Laboratory), Institute of Mechanics, Chinese Academy of Sciences, 100190, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lin", 
        "givenName": "Hai", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Chinese Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.410726.6", 
          "name": [
            "Key Laboratory of Microgravity (National Microgravity Laboratory), Institute of Mechanics, Chinese Academy of Sciences, 100190, Beijing, China", 
            "School of Engineering Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhao", 
        "givenName": "Jian-Fu", 
        "id": "sg:person.012221444413.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012221444413.38"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Chinese Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.410726.6", 
          "name": [
            "Key Laboratory of Microgravity (National Microgravity Laboratory), Institute of Mechanics, Chinese Academy of Sciences, 100190, Beijing, China", 
            "School of Engineering Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Kai", 
        "id": "sg:person.01150535230.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01150535230.13"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Mechanics", 
          "id": "https://www.grid.ac/institutes/grid.458484.1", 
          "name": [
            "Key Laboratory of Microgravity (National Microgravity Laboratory), Institute of Mechanics, Chinese Academy of Sciences, 100190, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hu", 
        "givenName": "Wen-Rui", 
        "id": "sg:person.015227623250.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015227623250.01"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.cryogenics.2015.10.018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004075953"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.actaastro.2015.02.023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007753768"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12217-010-9237-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008701705", 
          "https://doi.org/10.1007/s12217-010-9237-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12217-010-9237-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008701705", 
          "https://doi.org/10.1007/s12217-010-9237-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00348-015-1920-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009010388", 
          "https://doi.org/10.1007/s00348-015-1920-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.compfluid.2015.08.017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009484791"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12217-016-9526-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015818120", 
          "https://doi.org/10.1007/s12217-016-9526-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12217-016-9526-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015818120", 
          "https://doi.org/10.1007/s12217-016-9526-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0021-9991(81)90145-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016212158"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0021-9991(92)90240-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019586095"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12217-016-9492-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019953708", 
          "https://doi.org/10.1007/s12217-016-9492-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12217-013-9340-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032025568", 
          "https://doi.org/10.1007/s12217-013-9340-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijhydene.2006.08.052", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036439563"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcis.2008.01.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038280296"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jcph.1998.6168", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052501255"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1596913", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057724172"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1115/1.4023891", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062149209"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jsv.2017.04.029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085150700"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10409-017-0700-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090940866", 
          "https://doi.org/10.1007/s10409-017-0700-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10409-017-0700-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090940866", 
          "https://doi.org/10.1007/s10409-017-0700-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cma.2017.08.022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091242649"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.euromechflu.2017.12.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099927800"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-12", 
    "datePublishedReg": "2018-12-01", 
    "description": "The oscillation of liquid/gas free surface in a partially filled storage tank caused by an abrupt drop of gravity level is of critical importance for the fluids management in space. In present study we investigate the dynamic behavior of free surface in tank models (tubes) using water as the working medium utilizing the Drop Tower Beijing, which can provide a 3.6s short-term microgravity condition. Meanwhile, the corresponding numerical simulation using volume of fluids (VOF) methods was carried out. It is shown that the dynamic behavior of free surface, which belongs to the typical phenomenon of capillary flow, is affected by the properties of working medium and the geometry and surface properties of the storage tank (especially the contact angle) jointly. The numerical simulation could capture the major characteristic oscillation frequency of free surface revealed by experiment. The oscillation frequency of free surface increases with the increasing air fraction and remains nearly constant at large air fraction. For the same air fraction, the oscillation frequency significantly increases with the decreasing tank diameter.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s12217-018-9642-5", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1026232", 
        "issn": [
          "0938-0108", 
          "1875-0494"
        ], 
        "name": "Microgravity Science and Technology", 
        "type": "Periodical"
      }
    ], 
    "name": "Dynamic Behaviors of Liquid in Partially Filled Tank in Short-term Microgravity", 
    "pagination": "1-8", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "00deb64d053aa07a00beba80cb3e9ddb57b7caced96c988776c97cdbe5d1b923"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s12217-018-9642-5"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1106014118"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s12217-018-9642-5", 
      "https://app.dimensions.ai/details/publication/pub.1106014118"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T01:16", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8697_00000568.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs12217-018-9642-5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12217-018-9642-5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12217-018-9642-5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12217-018-9642-5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12217-018-9642-5'


 

This table displays all metadata directly associated to this object as RDF triples.

148 TRIPLES      21 PREDICATES      44 URIs      17 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s12217-018-9642-5 schema:about anzsrc-for:09
2 anzsrc-for:0915
3 schema:author Ncf22a8fffb434ffbb15c41eb7e3ce7cf
4 schema:citation sg:pub.10.1007/s00348-015-1920-z
5 sg:pub.10.1007/s10409-017-0700-9
6 sg:pub.10.1007/s12217-010-9237-2
7 sg:pub.10.1007/s12217-013-9340-2
8 sg:pub.10.1007/s12217-016-9492-y
9 sg:pub.10.1007/s12217-016-9526-5
10 https://doi.org/10.1006/jcph.1998.6168
11 https://doi.org/10.1016/0021-9991(81)90145-5
12 https://doi.org/10.1016/0021-9991(92)90240-y
13 https://doi.org/10.1016/j.actaastro.2015.02.023
14 https://doi.org/10.1016/j.cma.2017.08.022
15 https://doi.org/10.1016/j.compfluid.2015.08.017
16 https://doi.org/10.1016/j.cryogenics.2015.10.018
17 https://doi.org/10.1016/j.euromechflu.2017.12.008
18 https://doi.org/10.1016/j.ijhydene.2006.08.052
19 https://doi.org/10.1016/j.jcis.2008.01.009
20 https://doi.org/10.1016/j.jsv.2017.04.029
21 https://doi.org/10.1063/1.1596913
22 https://doi.org/10.1115/1.4023891
23 schema:datePublished 2018-12
24 schema:datePublishedReg 2018-12-01
25 schema:description The oscillation of liquid/gas free surface in a partially filled storage tank caused by an abrupt drop of gravity level is of critical importance for the fluids management in space. In present study we investigate the dynamic behavior of free surface in tank models (tubes) using water as the working medium utilizing the Drop Tower Beijing, which can provide a 3.6s short-term microgravity condition. Meanwhile, the corresponding numerical simulation using volume of fluids (VOF) methods was carried out. It is shown that the dynamic behavior of free surface, which belongs to the typical phenomenon of capillary flow, is affected by the properties of working medium and the geometry and surface properties of the storage tank (especially the contact angle) jointly. The numerical simulation could capture the major characteristic oscillation frequency of free surface revealed by experiment. The oscillation frequency of free surface increases with the increasing air fraction and remains nearly constant at large air fraction. For the same air fraction, the oscillation frequency significantly increases with the decreasing tank diameter.
26 schema:genre research_article
27 schema:inLanguage en
28 schema:isAccessibleForFree false
29 schema:isPartOf sg:journal.1026232
30 schema:name Dynamic Behaviors of Liquid in Partially Filled Tank in Short-term Microgravity
31 schema:pagination 1-8
32 schema:productId N772fcbe4a0f74c9c942c39f09e7e3ee5
33 N99b6b672e95d4a28bd4b517837a96830
34 Nc65bdecaf26147298a1cf45517072887
35 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106014118
36 https://doi.org/10.1007/s12217-018-9642-5
37 schema:sdDatePublished 2019-04-11T01:16
38 schema:sdLicense https://scigraph.springernature.com/explorer/license/
39 schema:sdPublisher Ne7284f61c45a40d2969de735570a982a
40 schema:url https://link.springer.com/10.1007%2Fs12217-018-9642-5
41 sgo:license sg:explorer/license/
42 sgo:sdDataset articles
43 rdf:type schema:ScholarlyArticle
44 N1b4cc06b4b574b2b89753d2aa6fb24d8 rdf:first sg:person.012221444413.38
45 rdf:rest Nd725fae0650f4360b5164dc6988aedd7
46 N772fcbe4a0f74c9c942c39f09e7e3ee5 schema:name dimensions_id
47 schema:value pub.1106014118
48 rdf:type schema:PropertyValue
49 N99b6b672e95d4a28bd4b517837a96830 schema:name doi
50 schema:value 10.1007/s12217-018-9642-5
51 rdf:type schema:PropertyValue
52 Na3b284d6e2094068af60f24a84ba7979 schema:affiliation https://www.grid.ac/institutes/grid.458484.1
53 schema:familyName Lin
54 schema:givenName Hai
55 rdf:type schema:Person
56 Na908c3a580944b07a0d16cc71101647a rdf:first Na3b284d6e2094068af60f24a84ba7979
57 rdf:rest N1b4cc06b4b574b2b89753d2aa6fb24d8
58 Nc65bdecaf26147298a1cf45517072887 schema:name readcube_id
59 schema:value 00deb64d053aa07a00beba80cb3e9ddb57b7caced96c988776c97cdbe5d1b923
60 rdf:type schema:PropertyValue
61 Ncf22a8fffb434ffbb15c41eb7e3ce7cf rdf:first Nd9b7d1745a1e4dafa070eebc60ac760e
62 rdf:rest Na908c3a580944b07a0d16cc71101647a
63 Nd725fae0650f4360b5164dc6988aedd7 rdf:first sg:person.01150535230.13
64 rdf:rest Ne9bf0463a3b6463a86d6cc68e5146e7c
65 Nd9b7d1745a1e4dafa070eebc60ac760e schema:affiliation https://www.grid.ac/institutes/grid.410726.6
66 schema:familyName Li
67 schema:givenName Ji-Cheng
68 rdf:type schema:Person
69 Ne7284f61c45a40d2969de735570a982a schema:name Springer Nature - SN SciGraph project
70 rdf:type schema:Organization
71 Ne9bf0463a3b6463a86d6cc68e5146e7c rdf:first sg:person.015227623250.01
72 rdf:rest rdf:nil
73 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
74 schema:name Engineering
75 rdf:type schema:DefinedTerm
76 anzsrc-for:0915 schema:inDefinedTermSet anzsrc-for:
77 schema:name Interdisciplinary Engineering
78 rdf:type schema:DefinedTerm
79 sg:journal.1026232 schema:issn 0938-0108
80 1875-0494
81 schema:name Microgravity Science and Technology
82 rdf:type schema:Periodical
83 sg:person.01150535230.13 schema:affiliation https://www.grid.ac/institutes/grid.410726.6
84 schema:familyName Li
85 schema:givenName Kai
86 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01150535230.13
87 rdf:type schema:Person
88 sg:person.012221444413.38 schema:affiliation https://www.grid.ac/institutes/grid.410726.6
89 schema:familyName Zhao
90 schema:givenName Jian-Fu
91 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012221444413.38
92 rdf:type schema:Person
93 sg:person.015227623250.01 schema:affiliation https://www.grid.ac/institutes/grid.458484.1
94 schema:familyName Hu
95 schema:givenName Wen-Rui
96 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015227623250.01
97 rdf:type schema:Person
98 sg:pub.10.1007/s00348-015-1920-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1009010388
99 https://doi.org/10.1007/s00348-015-1920-z
100 rdf:type schema:CreativeWork
101 sg:pub.10.1007/s10409-017-0700-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090940866
102 https://doi.org/10.1007/s10409-017-0700-9
103 rdf:type schema:CreativeWork
104 sg:pub.10.1007/s12217-010-9237-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008701705
105 https://doi.org/10.1007/s12217-010-9237-2
106 rdf:type schema:CreativeWork
107 sg:pub.10.1007/s12217-013-9340-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032025568
108 https://doi.org/10.1007/s12217-013-9340-2
109 rdf:type schema:CreativeWork
110 sg:pub.10.1007/s12217-016-9492-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1019953708
111 https://doi.org/10.1007/s12217-016-9492-y
112 rdf:type schema:CreativeWork
113 sg:pub.10.1007/s12217-016-9526-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015818120
114 https://doi.org/10.1007/s12217-016-9526-5
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1006/jcph.1998.6168 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052501255
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1016/0021-9991(81)90145-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016212158
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1016/0021-9991(92)90240-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1019586095
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1016/j.actaastro.2015.02.023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007753768
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1016/j.cma.2017.08.022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091242649
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1016/j.compfluid.2015.08.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009484791
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1016/j.cryogenics.2015.10.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004075953
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1016/j.euromechflu.2017.12.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099927800
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1016/j.ijhydene.2006.08.052 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036439563
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1016/j.jcis.2008.01.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038280296
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1016/j.jsv.2017.04.029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085150700
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1063/1.1596913 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057724172
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1115/1.4023891 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062149209
141 rdf:type schema:CreativeWork
142 https://www.grid.ac/institutes/grid.410726.6 schema:alternateName University of Chinese Academy of Sciences
143 schema:name Key Laboratory of Microgravity (National Microgravity Laboratory), Institute of Mechanics, Chinese Academy of Sciences, 100190, Beijing, China
144 School of Engineering Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China
145 rdf:type schema:Organization
146 https://www.grid.ac/institutes/grid.458484.1 schema:alternateName Institute of Mechanics
147 schema:name Key Laboratory of Microgravity (National Microgravity Laboratory), Institute of Mechanics, Chinese Academy of Sciences, 100190, Beijing, China
148 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...