Newton–Kantorovich regularization method for nonlinear ill-posed equations involving m-accretive operators in Banach spaces View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-03-28

AUTHORS

C. D. Sreedeep, Santhosh George, Ioannis K. Argyros

ABSTRACT

In this paper, we study nonlinear ill-posed problems involving m-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m-$$\end{document}accretive mappings in Banach spaces. We consider Newton–Kantorovich regularization method for the implementation of Lavrentiev regularization method. Using general Hölder type source condition we obtain an error estimate. We also use the adaptive parameter choice strategy proposed by Pereverzev and Schock (SIAM J Numer Anal 43(5):2060–2076, 2005) for choosing the regularization parameter. More... »

PAGES

459-473

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s12215-019-00413-4

DOI

http://dx.doi.org/10.1007/s12215-019-00413-4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1113059969


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Mathematical and Computational Sciences, National Institute of Technology Karnataka, 575 025, Mangaluru, India", 
          "id": "http://www.grid.ac/institutes/grid.444525.6", 
          "name": [
            "Department of Mathematical and Computational Sciences, National Institute of Technology Karnataka, 575 025, Mangaluru, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sreedeep", 
        "givenName": "C. D.", 
        "id": "sg:person.012543377324.51", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012543377324.51"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Mathematical and Computational Sciences, National Institute of Technology Karnataka, 575 025, Mangaluru, India", 
          "id": "http://www.grid.ac/institutes/grid.444525.6", 
          "name": [
            "Department of Mathematical and Computational Sciences, National Institute of Technology Karnataka, 575 025, Mangaluru, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "George", 
        "givenName": "Santhosh", 
        "id": "sg:person.016015532400.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016015532400.41"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Mathematical Sciences, Cameron University, 73505, Lawton, OK, USA", 
          "id": "http://www.grid.ac/institutes/grid.253592.a", 
          "name": [
            "Department of Mathematical Sciences, Cameron University, 73505, Lawton, OK, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Argyros", 
        "givenName": "Ioannis K.", 
        "id": "sg:person.015707547201.06", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015707547201.06"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s11075-014-9844-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035250842", 
          "https://doi.org/10.1007/s11075-014-9844-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.3103/s1066369x13020072", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070974059", 
          "https://doi.org/10.3103/s1066369x13020072"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-94-010-1542-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109716767", 
          "https://doi.org/10.1007/978-94-010-1542-4"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-03-28", 
    "datePublishedReg": "2019-03-28", 
    "description": "In this paper, we study nonlinear ill-posed problems involving m-\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$m-$$\\end{document}accretive mappings in Banach spaces. We consider Newton\u2013Kantorovich regularization method for the implementation of Lavrentiev regularization method. Using general H\u00f6lder type source condition we obtain an error estimate. We also use the adaptive parameter choice strategy proposed by Pereverzev and Schock (SIAM J Numer Anal 43(5):2060\u20132076, 2005) for choosing the regularization parameter.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s12215-019-00413-4", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136673", 
        "issn": [
          "0009-725X", 
          "1973-4409"
        ], 
        "name": "Rendiconti del Circolo Matematico di Palermo Series 2", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "69"
      }
    ], 
    "keywords": [
      "regularization method", 
      "Banach spaces", 
      "adaptive parameter choice strategy", 
      "Lavrentiev regularization method", 
      "parameter choice strategy", 
      "accretive operators", 
      "error estimates", 
      "regularization parameter", 
      "source conditions", 
      "choice strategies", 
      "Pereverzev", 
      "space", 
      "Schock", 
      "equations", 
      "operators", 
      "problem", 
      "estimates", 
      "parameters", 
      "mapping", 
      "implementation", 
      "conditions", 
      "strategies", 
      "method", 
      "paper", 
      "Newton\u2013Kantorovich regularization method", 
      "general H\u00f6lder type source condition", 
      "H\u00f6lder type source condition", 
      "type source condition"
    ], 
    "name": "Newton\u2013Kantorovich regularization method for nonlinear ill-posed equations involving m-accretive operators in Banach spaces", 
    "pagination": "459-473", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1113059969"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s12215-019-00413-4"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s12215-019-00413-4", 
      "https://app.dimensions.ai/details/publication/pub.1113059969"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-11-01T18:35", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/article/article_799.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s12215-019-00413-4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12215-019-00413-4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12215-019-00413-4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12215-019-00413-4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12215-019-00413-4'


 

This table displays all metadata directly associated to this object as RDF triples.

115 TRIPLES      22 PREDICATES      56 URIs      45 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s12215-019-00413-4 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author Naf9c66177ccd403d8ede572bded78425
4 schema:citation sg:pub.10.1007/978-94-010-1542-4
5 sg:pub.10.1007/s11075-014-9844-x
6 sg:pub.10.3103/s1066369x13020072
7 schema:datePublished 2019-03-28
8 schema:datePublishedReg 2019-03-28
9 schema:description In this paper, we study nonlinear ill-posed problems involving m-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m-$$\end{document}accretive mappings in Banach spaces. We consider Newton–Kantorovich regularization method for the implementation of Lavrentiev regularization method. Using general Hölder type source condition we obtain an error estimate. We also use the adaptive parameter choice strategy proposed by Pereverzev and Schock (SIAM J Numer Anal 43(5):2060–2076, 2005) for choosing the regularization parameter.
10 schema:genre article
11 schema:inLanguage en
12 schema:isAccessibleForFree false
13 schema:isPartOf N6dd9153648544646838db10aaef24115
14 N937ca749e30547fdbf7682b1714a74c2
15 sg:journal.1136673
16 schema:keywords Banach spaces
17 Hölder type source condition
18 Lavrentiev regularization method
19 Newton–Kantorovich regularization method
20 Pereverzev
21 Schock
22 accretive operators
23 adaptive parameter choice strategy
24 choice strategies
25 conditions
26 equations
27 error estimates
28 estimates
29 general Hölder type source condition
30 implementation
31 mapping
32 method
33 operators
34 paper
35 parameter choice strategy
36 parameters
37 problem
38 regularization method
39 regularization parameter
40 source conditions
41 space
42 strategies
43 type source condition
44 schema:name Newton–Kantorovich regularization method for nonlinear ill-posed equations involving m-accretive operators in Banach spaces
45 schema:pagination 459-473
46 schema:productId N7f1ecd92e85045b18c7a1b447463ba08
47 Nb8287397d6a14674923cfaab446b435c
48 schema:sameAs https://app.dimensions.ai/details/publication/pub.1113059969
49 https://doi.org/10.1007/s12215-019-00413-4
50 schema:sdDatePublished 2021-11-01T18:35
51 schema:sdLicense https://scigraph.springernature.com/explorer/license/
52 schema:sdPublisher N2369092cf63f40c3b8ee92de23dd906e
53 schema:url https://doi.org/10.1007/s12215-019-00413-4
54 sgo:license sg:explorer/license/
55 sgo:sdDataset articles
56 rdf:type schema:ScholarlyArticle
57 N1e03d2e739184fb6aa38462f12064347 rdf:first sg:person.015707547201.06
58 rdf:rest rdf:nil
59 N2369092cf63f40c3b8ee92de23dd906e schema:name Springer Nature - SN SciGraph project
60 rdf:type schema:Organization
61 N6dd9153648544646838db10aaef24115 schema:issueNumber 2
62 rdf:type schema:PublicationIssue
63 N7f1ecd92e85045b18c7a1b447463ba08 schema:name doi
64 schema:value 10.1007/s12215-019-00413-4
65 rdf:type schema:PropertyValue
66 N937ca749e30547fdbf7682b1714a74c2 schema:volumeNumber 69
67 rdf:type schema:PublicationVolume
68 Naf9c66177ccd403d8ede572bded78425 rdf:first sg:person.012543377324.51
69 rdf:rest Nf6d15c59622b48379d1ff8eed4ebf617
70 Nb8287397d6a14674923cfaab446b435c schema:name dimensions_id
71 schema:value pub.1113059969
72 rdf:type schema:PropertyValue
73 Nf6d15c59622b48379d1ff8eed4ebf617 rdf:first sg:person.016015532400.41
74 rdf:rest N1e03d2e739184fb6aa38462f12064347
75 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
76 schema:name Mathematical Sciences
77 rdf:type schema:DefinedTerm
78 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
79 schema:name Pure Mathematics
80 rdf:type schema:DefinedTerm
81 sg:journal.1136673 schema:issn 0009-725X
82 1973-4409
83 schema:name Rendiconti del Circolo Matematico di Palermo Series 2
84 schema:publisher Springer Nature
85 rdf:type schema:Periodical
86 sg:person.012543377324.51 schema:affiliation grid-institutes:grid.444525.6
87 schema:familyName Sreedeep
88 schema:givenName C. D.
89 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012543377324.51
90 rdf:type schema:Person
91 sg:person.015707547201.06 schema:affiliation grid-institutes:grid.253592.a
92 schema:familyName Argyros
93 schema:givenName Ioannis K.
94 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015707547201.06
95 rdf:type schema:Person
96 sg:person.016015532400.41 schema:affiliation grid-institutes:grid.444525.6
97 schema:familyName George
98 schema:givenName Santhosh
99 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016015532400.41
100 rdf:type schema:Person
101 sg:pub.10.1007/978-94-010-1542-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109716767
102 https://doi.org/10.1007/978-94-010-1542-4
103 rdf:type schema:CreativeWork
104 sg:pub.10.1007/s11075-014-9844-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1035250842
105 https://doi.org/10.1007/s11075-014-9844-x
106 rdf:type schema:CreativeWork
107 sg:pub.10.3103/s1066369x13020072 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070974059
108 https://doi.org/10.3103/s1066369x13020072
109 rdf:type schema:CreativeWork
110 grid-institutes:grid.253592.a schema:alternateName Department of Mathematical Sciences, Cameron University, 73505, Lawton, OK, USA
111 schema:name Department of Mathematical Sciences, Cameron University, 73505, Lawton, OK, USA
112 rdf:type schema:Organization
113 grid-institutes:grid.444525.6 schema:alternateName Department of Mathematical and Computational Sciences, National Institute of Technology Karnataka, 575 025, Mangaluru, India
114 schema:name Department of Mathematical and Computational Sciences, National Institute of Technology Karnataka, 575 025, Mangaluru, India
115 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...