Weighted boundedness of multilinear maximal function using Dirac deltas View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-02-09

AUTHORS

Abhishek Ghosh, Saurabh Shrivastava, Kalachand Shuin

ABSTRACT

In this article we extend a method of Miguel de Guzmán involving boundedness properties of maximal functions using Dirac deltas to multilinear setting. This method involves estimating maximal functions over finite linear combination of Dirac deltas. As an application, we obtain end-point weighted boundedness of the multilinear Hardy–Littlewood fractional maximal function with respect to multilinear weights. More... »

PAGES

1-13

References to SciGraph publications

  • 2009-06. Weighted inequalities for multilinear fractional integral operators in COLLECTANEA MATHEMATICA
  • 1992-10. Weak type (1, 1) inequalities of maximal convolution operators in RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO SERIES 2
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s12215-019-00401-8

    DOI

    http://dx.doi.org/10.1007/s12215-019-00401-8

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1112041215


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Indian Institute of Technology Kanpur", 
              "id": "https://www.grid.ac/institutes/grid.417965.8", 
              "name": [
                "Department of Mathematics and Statistics, Indian Institute of Technology Kanpur, 208016, Kanpur, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ghosh", 
            "givenName": "Abhishek", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Indian Institute of Science Education and Research, Bhopal", 
              "id": "https://www.grid.ac/institutes/grid.462376.2", 
              "name": [
                "Department of Mathematics, Indian Institute of Science Education and Research, 462066, Bhopal, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Shrivastava", 
            "givenName": "Saurabh", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Indian Institute of Science Education and Research, Bhopal", 
              "id": "https://www.grid.ac/institutes/grid.462376.2", 
              "name": [
                "Department of Mathematics, Indian Institute of Science Education and Research, 462066, Bhopal, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Shuin", 
            "givenName": "Kalachand", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1112/blms/16.6.595", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006653796"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1090/s0002-9947-1971-0285938-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015404987"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.aim.2008.10.014", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017324845"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1112/s0024609396002081", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019085386"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf03191210", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027713207", 
              "https://doi.org/10.1007/bf03191210"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf03191210", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027713207", 
              "https://doi.org/10.1007/bf03191210"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1090/s0002-9947-1972-0293384-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033583655"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02848939", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047537454", 
              "https://doi.org/10.1007/bf02848939"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02848939", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047537454", 
              "https://doi.org/10.1007/bf02848939"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1112/blms/22.4.367", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051339433"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2307/120971", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1069397448"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2307/121111", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1069397564"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2307/2374799", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1069901124"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2307/2952458", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1070146058"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.4007/annals.2003.157.647", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1071866774"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-02-09", 
        "datePublishedReg": "2019-02-09", 
        "description": "In this article we extend a method of Miguel de Guzm\u00e1n involving boundedness properties of maximal functions using Dirac deltas to multilinear setting. This method involves estimating maximal functions over finite linear combination of Dirac deltas. As an application, we obtain end-point weighted boundedness of the multilinear Hardy\u2013Littlewood fractional maximal function with respect to multilinear weights.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s12215-019-00401-8", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1136673", 
            "issn": [
              "0009-725X", 
              "1973-4409"
            ], 
            "name": "Rendiconti del Circolo Matematico di Palermo Series 2", 
            "type": "Periodical"
          }
        ], 
        "name": "Weighted boundedness of multilinear maximal function using Dirac deltas", 
        "pagination": "1-13", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "e0ba437bbf0422364b22f5f2770dd08886cf29636d03a3fce6c534314cfb0e61"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s12215-019-00401-8"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1112041215"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s12215-019-00401-8", 
          "https://app.dimensions.ai/details/publication/pub.1112041215"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T09:03", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000333_0000000333/records_41705_00000000.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1007%2Fs12215-019-00401-8"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12215-019-00401-8'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12215-019-00401-8'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12215-019-00401-8'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12215-019-00401-8'


     

    This table displays all metadata directly associated to this object as RDF triples.

    110 TRIPLES      21 PREDICATES      37 URIs      16 LITERALS      5 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s12215-019-00401-8 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author N213025f2af874bfd9544ff3bc745f20c
    4 schema:citation sg:pub.10.1007/bf02848939
    5 sg:pub.10.1007/bf03191210
    6 https://doi.org/10.1016/j.aim.2008.10.014
    7 https://doi.org/10.1090/s0002-9947-1971-0285938-7
    8 https://doi.org/10.1090/s0002-9947-1972-0293384-6
    9 https://doi.org/10.1112/blms/16.6.595
    10 https://doi.org/10.1112/blms/22.4.367
    11 https://doi.org/10.1112/s0024609396002081
    12 https://doi.org/10.2307/120971
    13 https://doi.org/10.2307/121111
    14 https://doi.org/10.2307/2374799
    15 https://doi.org/10.2307/2952458
    16 https://doi.org/10.4007/annals.2003.157.647
    17 schema:datePublished 2019-02-09
    18 schema:datePublishedReg 2019-02-09
    19 schema:description In this article we extend a method of Miguel de Guzmán involving boundedness properties of maximal functions using Dirac deltas to multilinear setting. This method involves estimating maximal functions over finite linear combination of Dirac deltas. As an application, we obtain end-point weighted boundedness of the multilinear Hardy–Littlewood fractional maximal function with respect to multilinear weights.
    20 schema:genre research_article
    21 schema:inLanguage en
    22 schema:isAccessibleForFree false
    23 schema:isPartOf sg:journal.1136673
    24 schema:name Weighted boundedness of multilinear maximal function using Dirac deltas
    25 schema:pagination 1-13
    26 schema:productId N4aaeca421ac143a7925fd5b3f3d95908
    27 N88e8c68178a7493cbfb01fc79f322e00
    28 Ne8d09151137e46b5a7a8fa848f53dced
    29 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112041215
    30 https://doi.org/10.1007/s12215-019-00401-8
    31 schema:sdDatePublished 2019-04-11T09:03
    32 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    33 schema:sdPublisher N1bc382349d2f48208521b1aba455d3c6
    34 schema:url https://link.springer.com/10.1007%2Fs12215-019-00401-8
    35 sgo:license sg:explorer/license/
    36 sgo:sdDataset articles
    37 rdf:type schema:ScholarlyArticle
    38 N169e21f60fc749bc84853ebbef0c5fe3 schema:affiliation https://www.grid.ac/institutes/grid.462376.2
    39 schema:familyName Shrivastava
    40 schema:givenName Saurabh
    41 rdf:type schema:Person
    42 N1bc382349d2f48208521b1aba455d3c6 schema:name Springer Nature - SN SciGraph project
    43 rdf:type schema:Organization
    44 N213025f2af874bfd9544ff3bc745f20c rdf:first N474d66bb7c9648ff94313b33c2481421
    45 rdf:rest Nc1b81c8d0ce54bd8a150e173dd8d104f
    46 N474d66bb7c9648ff94313b33c2481421 schema:affiliation https://www.grid.ac/institutes/grid.417965.8
    47 schema:familyName Ghosh
    48 schema:givenName Abhishek
    49 rdf:type schema:Person
    50 N4aaeca421ac143a7925fd5b3f3d95908 schema:name dimensions_id
    51 schema:value pub.1112041215
    52 rdf:type schema:PropertyValue
    53 N88e8c68178a7493cbfb01fc79f322e00 schema:name readcube_id
    54 schema:value e0ba437bbf0422364b22f5f2770dd08886cf29636d03a3fce6c534314cfb0e61
    55 rdf:type schema:PropertyValue
    56 N99ead9dc70fd4bf5885b5a1d9efd235b schema:affiliation https://www.grid.ac/institutes/grid.462376.2
    57 schema:familyName Shuin
    58 schema:givenName Kalachand
    59 rdf:type schema:Person
    60 Na82022f3fa6d48b9a81bb77387b43719 rdf:first N99ead9dc70fd4bf5885b5a1d9efd235b
    61 rdf:rest rdf:nil
    62 Nc1b81c8d0ce54bd8a150e173dd8d104f rdf:first N169e21f60fc749bc84853ebbef0c5fe3
    63 rdf:rest Na82022f3fa6d48b9a81bb77387b43719
    64 Ne8d09151137e46b5a7a8fa848f53dced schema:name doi
    65 schema:value 10.1007/s12215-019-00401-8
    66 rdf:type schema:PropertyValue
    67 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    68 schema:name Mathematical Sciences
    69 rdf:type schema:DefinedTerm
    70 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    71 schema:name Pure Mathematics
    72 rdf:type schema:DefinedTerm
    73 sg:journal.1136673 schema:issn 0009-725X
    74 1973-4409
    75 schema:name Rendiconti del Circolo Matematico di Palermo Series 2
    76 rdf:type schema:Periodical
    77 sg:pub.10.1007/bf02848939 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047537454
    78 https://doi.org/10.1007/bf02848939
    79 rdf:type schema:CreativeWork
    80 sg:pub.10.1007/bf03191210 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027713207
    81 https://doi.org/10.1007/bf03191210
    82 rdf:type schema:CreativeWork
    83 https://doi.org/10.1016/j.aim.2008.10.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017324845
    84 rdf:type schema:CreativeWork
    85 https://doi.org/10.1090/s0002-9947-1971-0285938-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015404987
    86 rdf:type schema:CreativeWork
    87 https://doi.org/10.1090/s0002-9947-1972-0293384-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033583655
    88 rdf:type schema:CreativeWork
    89 https://doi.org/10.1112/blms/16.6.595 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006653796
    90 rdf:type schema:CreativeWork
    91 https://doi.org/10.1112/blms/22.4.367 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051339433
    92 rdf:type schema:CreativeWork
    93 https://doi.org/10.1112/s0024609396002081 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019085386
    94 rdf:type schema:CreativeWork
    95 https://doi.org/10.2307/120971 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069397448
    96 rdf:type schema:CreativeWork
    97 https://doi.org/10.2307/121111 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069397564
    98 rdf:type schema:CreativeWork
    99 https://doi.org/10.2307/2374799 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069901124
    100 rdf:type schema:CreativeWork
    101 https://doi.org/10.2307/2952458 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070146058
    102 rdf:type schema:CreativeWork
    103 https://doi.org/10.4007/annals.2003.157.647 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071866774
    104 rdf:type schema:CreativeWork
    105 https://www.grid.ac/institutes/grid.417965.8 schema:alternateName Indian Institute of Technology Kanpur
    106 schema:name Department of Mathematics and Statistics, Indian Institute of Technology Kanpur, 208016, Kanpur, India
    107 rdf:type schema:Organization
    108 https://www.grid.ac/institutes/grid.462376.2 schema:alternateName Indian Institute of Science Education and Research, Bhopal
    109 schema:name Department of Mathematics, Indian Institute of Science Education and Research, 462066, Bhopal, India
    110 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...