On asymptotic bounds for the number of irreducible components of the moduli space of surfaces of general type View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2015-12

AUTHORS

Michael Lönne, Matteo Penegini

ABSTRACT

In this paper we investigate the asymptotic growth of the number of irreducible and connected components of the moduli space of surfaces of general type corresponding to certain families of surfaces isogenous to a higher product. We obtain a higher growth then the previous growth by Manetti (Topology 36:745–764, 1997).

PAGES

483-492

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s12215-015-0212-z

DOI

http://dx.doi.org/10.1007/s12215-015-0212-z

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1041111712


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Hannover", 
          "id": "https://www.grid.ac/institutes/grid.9122.8", 
          "name": [
            "Institut f\u00fcr Algebraische Geometrie, Leibniz Universit\u00e4t Hannover, Welfengarten 1, 30167, Hannover, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "L\u00f6nne", 
        "givenName": "Michael", 
        "id": "sg:person.015251017741.39", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015251017741.39"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Milan", 
          "id": "https://www.grid.ac/institutes/grid.4708.b", 
          "name": [
            "Dipartimento di Matematica, \u201cFederigo Enriques\u201d, Universit\u00e0 degli Studi di Milano, Via Saldini 50, 20133, Milan, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Penegini", 
        "givenName": "Matteo", 
        "id": "sg:person.015124106777.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015124106777.00"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s13348-011-0043-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001253561", 
          "https://doi.org/10.1007/s13348-011-0043-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1515/advgeom.2009.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013167996"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01390081", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014048438", 
          "https://doi.org/10.1007/bf01390081"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-13862-6_9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015261659", 
          "https://doi.org/10.1007/978-3-319-13862-6_9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1112/plms/s3-15.1.151", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018493787"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1353/ajm.2000.0002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020107565"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00927872.2012.758265", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034687434"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/0-8176-4417-2_1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035581242", 
          "https://doi.org/10.1007/0-8176-4417-2_1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0040-9383(96)00026-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039723251"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00009-006-0069-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039856373", 
          "https://doi.org/10.1007/s00009-006-0069-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1112/plms/s3-10.1.24", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045772430"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/s0129167x96000189", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062903508"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4007/annals.2003.158.577", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071866804"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4171/rlm/601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072320220"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2015-12", 
    "datePublishedReg": "2015-12-01", 
    "description": "In this paper we investigate the asymptotic growth of the number of irreducible and connected components of the moduli space of surfaces of general type corresponding to certain families of surfaces isogenous to a higher product. We obtain a higher growth then the previous growth by Manetti (Topology 36:745\u2013764, 1997).", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s12215-015-0212-z", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1136673", 
        "issn": [
          "0009-725X", 
          "1973-4409"
        ], 
        "name": "Rendiconti del Circolo Matematico di Palermo Series 2", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "64"
      }
    ], 
    "name": "On asymptotic bounds for the number of irreducible components of the moduli space of surfaces of general type", 
    "pagination": "483-492", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "c3d77c9738dd9ed1379f95e069ea8f345c53c0d21e48342fb9dba48c95268256"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s12215-015-0212-z"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1041111712"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s12215-015-0212-z", 
      "https://app.dimensions.ai/details/publication/pub.1041111712"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T13:23", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8659_00000537.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs12215-015-0212-z"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12215-015-0212-z'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12215-015-0212-z'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12215-015-0212-z'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12215-015-0212-z'


 

This table displays all metadata directly associated to this object as RDF triples.

118 TRIPLES      21 PREDICATES      41 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s12215-015-0212-z schema:about anzsrc-for:03
2 anzsrc-for:0306
3 schema:author Nfc452fa6f63e4ecea68963ddf9ef6ea0
4 schema:citation sg:pub.10.1007/0-8176-4417-2_1
5 sg:pub.10.1007/978-3-319-13862-6_9
6 sg:pub.10.1007/bf01390081
7 sg:pub.10.1007/s00009-006-0069-7
8 sg:pub.10.1007/s13348-011-0043-y
9 https://doi.org/10.1016/s0040-9383(96)00026-2
10 https://doi.org/10.1080/00927872.2012.758265
11 https://doi.org/10.1112/plms/s3-10.1.24
12 https://doi.org/10.1112/plms/s3-15.1.151
13 https://doi.org/10.1142/s0129167x96000189
14 https://doi.org/10.1353/ajm.2000.0002
15 https://doi.org/10.1515/advgeom.2009.015
16 https://doi.org/10.4007/annals.2003.158.577
17 https://doi.org/10.4171/rlm/601
18 schema:datePublished 2015-12
19 schema:datePublishedReg 2015-12-01
20 schema:description In this paper we investigate the asymptotic growth of the number of irreducible and connected components of the moduli space of surfaces of general type corresponding to certain families of surfaces isogenous to a higher product. We obtain a higher growth then the previous growth by Manetti (Topology 36:745–764, 1997).
21 schema:genre research_article
22 schema:inLanguage en
23 schema:isAccessibleForFree true
24 schema:isPartOf N1d45384e01524d09865e9d7fdb118b30
25 Na0cf705dba044301bbade6befa6686fb
26 sg:journal.1136673
27 schema:name On asymptotic bounds for the number of irreducible components of the moduli space of surfaces of general type
28 schema:pagination 483-492
29 schema:productId N393ea4392cf748c9acc22ca8d6d84c7f
30 Na010ae07286a4872b26347d8bb7e167d
31 Nea1b05a20c914acf9860556a38b338fd
32 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041111712
33 https://doi.org/10.1007/s12215-015-0212-z
34 schema:sdDatePublished 2019-04-10T13:23
35 schema:sdLicense https://scigraph.springernature.com/explorer/license/
36 schema:sdPublisher Nfab699e129594147a5a9b4aa16dc9860
37 schema:url http://link.springer.com/10.1007%2Fs12215-015-0212-z
38 sgo:license sg:explorer/license/
39 sgo:sdDataset articles
40 rdf:type schema:ScholarlyArticle
41 N1d45384e01524d09865e9d7fdb118b30 schema:issueNumber 3
42 rdf:type schema:PublicationIssue
43 N393ea4392cf748c9acc22ca8d6d84c7f schema:name dimensions_id
44 schema:value pub.1041111712
45 rdf:type schema:PropertyValue
46 Na010ae07286a4872b26347d8bb7e167d schema:name doi
47 schema:value 10.1007/s12215-015-0212-z
48 rdf:type schema:PropertyValue
49 Na0cf705dba044301bbade6befa6686fb schema:volumeNumber 64
50 rdf:type schema:PublicationVolume
51 Ne8534a828ba04ef09dd840b694586f03 rdf:first sg:person.015124106777.00
52 rdf:rest rdf:nil
53 Nea1b05a20c914acf9860556a38b338fd schema:name readcube_id
54 schema:value c3d77c9738dd9ed1379f95e069ea8f345c53c0d21e48342fb9dba48c95268256
55 rdf:type schema:PropertyValue
56 Nfab699e129594147a5a9b4aa16dc9860 schema:name Springer Nature - SN SciGraph project
57 rdf:type schema:Organization
58 Nfc452fa6f63e4ecea68963ddf9ef6ea0 rdf:first sg:person.015251017741.39
59 rdf:rest Ne8534a828ba04ef09dd840b694586f03
60 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
61 schema:name Chemical Sciences
62 rdf:type schema:DefinedTerm
63 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
64 schema:name Physical Chemistry (incl. Structural)
65 rdf:type schema:DefinedTerm
66 sg:journal.1136673 schema:issn 0009-725X
67 1973-4409
68 schema:name Rendiconti del Circolo Matematico di Palermo Series 2
69 rdf:type schema:Periodical
70 sg:person.015124106777.00 schema:affiliation https://www.grid.ac/institutes/grid.4708.b
71 schema:familyName Penegini
72 schema:givenName Matteo
73 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015124106777.00
74 rdf:type schema:Person
75 sg:person.015251017741.39 schema:affiliation https://www.grid.ac/institutes/grid.9122.8
76 schema:familyName Lönne
77 schema:givenName Michael
78 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015251017741.39
79 rdf:type schema:Person
80 sg:pub.10.1007/0-8176-4417-2_1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035581242
81 https://doi.org/10.1007/0-8176-4417-2_1
82 rdf:type schema:CreativeWork
83 sg:pub.10.1007/978-3-319-13862-6_9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015261659
84 https://doi.org/10.1007/978-3-319-13862-6_9
85 rdf:type schema:CreativeWork
86 sg:pub.10.1007/bf01390081 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014048438
87 https://doi.org/10.1007/bf01390081
88 rdf:type schema:CreativeWork
89 sg:pub.10.1007/s00009-006-0069-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039856373
90 https://doi.org/10.1007/s00009-006-0069-7
91 rdf:type schema:CreativeWork
92 sg:pub.10.1007/s13348-011-0043-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1001253561
93 https://doi.org/10.1007/s13348-011-0043-y
94 rdf:type schema:CreativeWork
95 https://doi.org/10.1016/s0040-9383(96)00026-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039723251
96 rdf:type schema:CreativeWork
97 https://doi.org/10.1080/00927872.2012.758265 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034687434
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1112/plms/s3-10.1.24 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045772430
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1112/plms/s3-15.1.151 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018493787
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1142/s0129167x96000189 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062903508
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1353/ajm.2000.0002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020107565
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1515/advgeom.2009.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013167996
108 rdf:type schema:CreativeWork
109 https://doi.org/10.4007/annals.2003.158.577 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071866804
110 rdf:type schema:CreativeWork
111 https://doi.org/10.4171/rlm/601 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072320220
112 rdf:type schema:CreativeWork
113 https://www.grid.ac/institutes/grid.4708.b schema:alternateName University of Milan
114 schema:name Dipartimento di Matematica, “Federigo Enriques”, Università degli Studi di Milano, Via Saldini 50, 20133, Milan, Italy
115 rdf:type schema:Organization
116 https://www.grid.ac/institutes/grid.9122.8 schema:alternateName University of Hannover
117 schema:name Institut für Algebraische Geometrie, Leibniz Universität Hannover, Welfengarten 1, 30167, Hannover, Germany
118 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...