On asymptotic bounds for the number of irreducible components of the moduli space of surfaces of general type View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2015-12

AUTHORS

Michael Lönne, Matteo Penegini

ABSTRACT

In this paper we investigate the asymptotic growth of the number of irreducible and connected components of the moduli space of surfaces of general type corresponding to certain families of surfaces isogenous to a higher product. We obtain a higher growth then the previous growth by Manetti (Topology 36:745–764, 1997).

PAGES

483-492

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s12215-015-0212-z

DOI

http://dx.doi.org/10.1007/s12215-015-0212-z

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1041111712


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Hannover", 
          "id": "https://www.grid.ac/institutes/grid.9122.8", 
          "name": [
            "Institut f\u00fcr Algebraische Geometrie, Leibniz Universit\u00e4t Hannover, Welfengarten 1, 30167, Hannover, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "L\u00f6nne", 
        "givenName": "Michael", 
        "id": "sg:person.015251017741.39", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015251017741.39"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Milan", 
          "id": "https://www.grid.ac/institutes/grid.4708.b", 
          "name": [
            "Dipartimento di Matematica, \u201cFederigo Enriques\u201d, Universit\u00e0 degli Studi di Milano, Via Saldini 50, 20133, Milan, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Penegini", 
        "givenName": "Matteo", 
        "id": "sg:person.015124106777.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015124106777.00"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s13348-011-0043-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001253561", 
          "https://doi.org/10.1007/s13348-011-0043-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1515/advgeom.2009.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013167996"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01390081", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014048438", 
          "https://doi.org/10.1007/bf01390081"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-13862-6_9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015261659", 
          "https://doi.org/10.1007/978-3-319-13862-6_9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1112/plms/s3-15.1.151", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018493787"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1353/ajm.2000.0002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020107565"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00927872.2012.758265", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034687434"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/0-8176-4417-2_1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035581242", 
          "https://doi.org/10.1007/0-8176-4417-2_1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0040-9383(96)00026-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039723251"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00009-006-0069-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039856373", 
          "https://doi.org/10.1007/s00009-006-0069-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1112/plms/s3-10.1.24", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045772430"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/s0129167x96000189", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062903508"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4007/annals.2003.158.577", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071866804"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4171/rlm/601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072320220"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2015-12", 
    "datePublishedReg": "2015-12-01", 
    "description": "In this paper we investigate the asymptotic growth of the number of irreducible and connected components of the moduli space of surfaces of general type corresponding to certain families of surfaces isogenous to a higher product. We obtain a higher growth then the previous growth by Manetti (Topology 36:745\u2013764, 1997).", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s12215-015-0212-z", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1136673", 
        "issn": [
          "0009-725X", 
          "1973-4409"
        ], 
        "name": "Rendiconti del Circolo Matematico di Palermo Series 2", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "64"
      }
    ], 
    "name": "On asymptotic bounds for the number of irreducible components of the moduli space of surfaces of general type", 
    "pagination": "483-492", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "c3d77c9738dd9ed1379f95e069ea8f345c53c0d21e48342fb9dba48c95268256"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s12215-015-0212-z"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1041111712"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s12215-015-0212-z", 
      "https://app.dimensions.ai/details/publication/pub.1041111712"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T13:23", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8659_00000537.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs12215-015-0212-z"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12215-015-0212-z'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12215-015-0212-z'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12215-015-0212-z'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12215-015-0212-z'


 

This table displays all metadata directly associated to this object as RDF triples.

118 TRIPLES      21 PREDICATES      41 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s12215-015-0212-z schema:about anzsrc-for:03
2 anzsrc-for:0306
3 schema:author Na7f1e8bac5d54109ba7b94800a46aa3f
4 schema:citation sg:pub.10.1007/0-8176-4417-2_1
5 sg:pub.10.1007/978-3-319-13862-6_9
6 sg:pub.10.1007/bf01390081
7 sg:pub.10.1007/s00009-006-0069-7
8 sg:pub.10.1007/s13348-011-0043-y
9 https://doi.org/10.1016/s0040-9383(96)00026-2
10 https://doi.org/10.1080/00927872.2012.758265
11 https://doi.org/10.1112/plms/s3-10.1.24
12 https://doi.org/10.1112/plms/s3-15.1.151
13 https://doi.org/10.1142/s0129167x96000189
14 https://doi.org/10.1353/ajm.2000.0002
15 https://doi.org/10.1515/advgeom.2009.015
16 https://doi.org/10.4007/annals.2003.158.577
17 https://doi.org/10.4171/rlm/601
18 schema:datePublished 2015-12
19 schema:datePublishedReg 2015-12-01
20 schema:description In this paper we investigate the asymptotic growth of the number of irreducible and connected components of the moduli space of surfaces of general type corresponding to certain families of surfaces isogenous to a higher product. We obtain a higher growth then the previous growth by Manetti (Topology 36:745–764, 1997).
21 schema:genre research_article
22 schema:inLanguage en
23 schema:isAccessibleForFree true
24 schema:isPartOf Necf0c4e78bbc451fb5ac25f90ff5283d
25 Nfc69296a29484b888e32b576d715625b
26 sg:journal.1136673
27 schema:name On asymptotic bounds for the number of irreducible components of the moduli space of surfaces of general type
28 schema:pagination 483-492
29 schema:productId N224a410bde6b4c539fa5d9d663c0326f
30 Nd8bd18f933824d39b9d0b174768f0d95
31 Nedcaab13a0b64037acd0068909a85953
32 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041111712
33 https://doi.org/10.1007/s12215-015-0212-z
34 schema:sdDatePublished 2019-04-10T13:23
35 schema:sdLicense https://scigraph.springernature.com/explorer/license/
36 schema:sdPublisher Ne1ddd4eabbfc447bab3c19dff7958ae3
37 schema:url http://link.springer.com/10.1007%2Fs12215-015-0212-z
38 sgo:license sg:explorer/license/
39 sgo:sdDataset articles
40 rdf:type schema:ScholarlyArticle
41 N224a410bde6b4c539fa5d9d663c0326f schema:name readcube_id
42 schema:value c3d77c9738dd9ed1379f95e069ea8f345c53c0d21e48342fb9dba48c95268256
43 rdf:type schema:PropertyValue
44 N687558dc01c044ffaffdde8da492760d rdf:first sg:person.015124106777.00
45 rdf:rest rdf:nil
46 Na7f1e8bac5d54109ba7b94800a46aa3f rdf:first sg:person.015251017741.39
47 rdf:rest N687558dc01c044ffaffdde8da492760d
48 Nd8bd18f933824d39b9d0b174768f0d95 schema:name doi
49 schema:value 10.1007/s12215-015-0212-z
50 rdf:type schema:PropertyValue
51 Ne1ddd4eabbfc447bab3c19dff7958ae3 schema:name Springer Nature - SN SciGraph project
52 rdf:type schema:Organization
53 Necf0c4e78bbc451fb5ac25f90ff5283d schema:issueNumber 3
54 rdf:type schema:PublicationIssue
55 Nedcaab13a0b64037acd0068909a85953 schema:name dimensions_id
56 schema:value pub.1041111712
57 rdf:type schema:PropertyValue
58 Nfc69296a29484b888e32b576d715625b schema:volumeNumber 64
59 rdf:type schema:PublicationVolume
60 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
61 schema:name Chemical Sciences
62 rdf:type schema:DefinedTerm
63 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
64 schema:name Physical Chemistry (incl. Structural)
65 rdf:type schema:DefinedTerm
66 sg:journal.1136673 schema:issn 0009-725X
67 1973-4409
68 schema:name Rendiconti del Circolo Matematico di Palermo Series 2
69 rdf:type schema:Periodical
70 sg:person.015124106777.00 schema:affiliation https://www.grid.ac/institutes/grid.4708.b
71 schema:familyName Penegini
72 schema:givenName Matteo
73 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015124106777.00
74 rdf:type schema:Person
75 sg:person.015251017741.39 schema:affiliation https://www.grid.ac/institutes/grid.9122.8
76 schema:familyName Lönne
77 schema:givenName Michael
78 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015251017741.39
79 rdf:type schema:Person
80 sg:pub.10.1007/0-8176-4417-2_1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035581242
81 https://doi.org/10.1007/0-8176-4417-2_1
82 rdf:type schema:CreativeWork
83 sg:pub.10.1007/978-3-319-13862-6_9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015261659
84 https://doi.org/10.1007/978-3-319-13862-6_9
85 rdf:type schema:CreativeWork
86 sg:pub.10.1007/bf01390081 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014048438
87 https://doi.org/10.1007/bf01390081
88 rdf:type schema:CreativeWork
89 sg:pub.10.1007/s00009-006-0069-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039856373
90 https://doi.org/10.1007/s00009-006-0069-7
91 rdf:type schema:CreativeWork
92 sg:pub.10.1007/s13348-011-0043-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1001253561
93 https://doi.org/10.1007/s13348-011-0043-y
94 rdf:type schema:CreativeWork
95 https://doi.org/10.1016/s0040-9383(96)00026-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039723251
96 rdf:type schema:CreativeWork
97 https://doi.org/10.1080/00927872.2012.758265 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034687434
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1112/plms/s3-10.1.24 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045772430
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1112/plms/s3-15.1.151 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018493787
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1142/s0129167x96000189 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062903508
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1353/ajm.2000.0002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020107565
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1515/advgeom.2009.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013167996
108 rdf:type schema:CreativeWork
109 https://doi.org/10.4007/annals.2003.158.577 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071866804
110 rdf:type schema:CreativeWork
111 https://doi.org/10.4171/rlm/601 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072320220
112 rdf:type schema:CreativeWork
113 https://www.grid.ac/institutes/grid.4708.b schema:alternateName University of Milan
114 schema:name Dipartimento di Matematica, “Federigo Enriques”, Università degli Studi di Milano, Via Saldini 50, 20133, Milan, Italy
115 rdf:type schema:Organization
116 https://www.grid.ac/institutes/grid.9122.8 schema:alternateName University of Hannover
117 schema:name Institut für Algebraische Geometrie, Leibniz Universität Hannover, Welfengarten 1, 30167, Hannover, Germany
118 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...