Ontology type: schema:ScholarlyArticle
2009-04
AUTHORSLuigi Ambrosio, Estibalitz Durand-Cartagena
ABSTRACTThis note is devoted to the differentiability properties of -Lipschitz maps defined on abstract Wiener spaces and with values in metric spaces (Y,dY). We prove the existence γ-a.e. of local seminorms in the Cameron-Martin space which allow to compute the metric derivative of the map.
PAGES1-10
http://scigraph.springernature.com/pub.10.1007/s12215-009-0001-7
DOIhttp://dx.doi.org/10.1007/s12215-009-0001-7
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1009843448
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"author": [
{
"affiliation": {
"alternateName": "Scuola Normale Superiore di Pisa",
"id": "https://www.grid.ac/institutes/grid.6093.c",
"name": [
"Classe di Scienze, Scuola Normale Superiore, Piazza Cavalieri 7, 56100, Pisa, Italy"
],
"type": "Organization"
},
"familyName": "Ambrosio",
"givenName": "Luigi",
"id": "sg:person.012621721115.68",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012621721115.68"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Complutense University of Madrid",
"id": "https://www.grid.ac/institutes/grid.4795.f",
"name": [
"Departamento de An\u00e1lisis Matem\u00e1tico, Facultad de Ciencias Matem\u00e1ticas, Universidad Complutense de Madrid, 28040, Madrid, Spain"
],
"type": "Organization"
},
"familyName": "Durand-Cartagena",
"givenName": "Estibalitz",
"id": "sg:person.010706372537.35",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010706372537.35"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/bf02683844",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1005378387",
"https://doi.org/10.1007/bf02683844"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1090/s0002-9939-1994-1189747-7",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1016285177"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bfb0095676",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1016802120",
"https://doi.org/10.1007/bfb0095676"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s002080000122",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1018180254",
"https://doi.org/10.1007/s002080000122"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1214/aop/1176989392",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1064403725"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.4171/zaa/1328",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1072321885"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.4310/cag.1993.v1.n4.a4",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1072457506"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.4310/cag.2001.v9.n5.a2",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1072457701"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.4064/sm-73-3-225-251",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1092013775"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1090/surv/062",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1098741760"
],
"type": "CreativeWork"
}
],
"datePublished": "2009-04",
"datePublishedReg": "2009-04-01",
"description": "This note is devoted to the differentiability properties of -Lipschitz maps defined on abstract Wiener spaces and with values in metric spaces (Y,dY). We prove the existence \u03b3-a.e. of local seminorms in the Cameron-Martin space which allow to compute the metric derivative of the map.",
"genre": "research_article",
"id": "sg:pub.10.1007/s12215-009-0001-7",
"inLanguage": [
"en"
],
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1136673",
"issn": [
"0009-725X",
"1973-4409"
],
"name": "Rendiconti del Circolo Matematico di Palermo Series 2",
"type": "Periodical"
},
{
"issueNumber": "1",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "58"
}
],
"name": "Metric differentiability of Lipschitz maps defined on Wiener spaces",
"pagination": "1-10",
"productId": [
{
"name": "readcube_id",
"type": "PropertyValue",
"value": [
"2ee4cac59ca051cbed215c5082ac956349cbd222918417fa68d457e81116be91"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s12215-009-0001-7"
]
},
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1009843448"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s12215-009-0001-7",
"https://app.dimensions.ai/details/publication/pub.1009843448"
],
"sdDataset": "articles",
"sdDatePublished": "2019-04-11T09:19",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000339_0000000339/records_109508_00000000.jsonl",
"type": "ScholarlyArticle",
"url": "http://link.springer.com/10.1007%2Fs12215-009-0001-7"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12215-009-0001-7'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12215-009-0001-7'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12215-009-0001-7'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12215-009-0001-7'
This table displays all metadata directly associated to this object as RDF triples.
96 TRIPLES
20 PREDICATES
35 URIs
19 LITERALS
7 BLANK NODES