Metric differentiability of Lipschitz maps defined on Wiener spaces View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2009-04

AUTHORS

Luigi Ambrosio, Estibalitz Durand-Cartagena

ABSTRACT

This note is devoted to the differentiability properties of -Lipschitz maps defined on abstract Wiener spaces and with values in metric spaces (Y,dY). We prove the existence γ-a.e. of local seminorms in the Cameron-Martin space which allow to compute the metric derivative of the map.

PAGES

1-10

References to SciGraph publications

  • 1996. Isoperimetry and Gaussian analysis in LECTURES ON PROBABILITY THEORY AND STATISTICS
  • 1997-05. Sobolev-type classes of functions with values in a metric space in SIBERIAN MATHEMATICAL JOURNAL
  • 2000-11. Rectifiable sets in metric and Banach spaces in MATHEMATISCHE ANNALEN
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s12215-009-0001-7

    DOI

    http://dx.doi.org/10.1007/s12215-009-0001-7

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1009843448


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "author": [
          {
            "affiliation": {
              "alternateName": "Scuola Normale Superiore di Pisa", 
              "id": "https://www.grid.ac/institutes/grid.6093.c", 
              "name": [
                "Classe di Scienze, Scuola Normale Superiore, Piazza Cavalieri 7, 56100, Pisa, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ambrosio", 
            "givenName": "Luigi", 
            "id": "sg:person.012621721115.68", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012621721115.68"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Complutense University of Madrid", 
              "id": "https://www.grid.ac/institutes/grid.4795.f", 
              "name": [
                "Departamento de An\u00e1lisis Matem\u00e1tico, Facultad de Ciencias Matem\u00e1ticas, Universidad Complutense de Madrid, 28040, Madrid, Spain"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Durand-Cartagena", 
            "givenName": "Estibalitz", 
            "id": "sg:person.010706372537.35", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010706372537.35"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf02683844", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005378387", 
              "https://doi.org/10.1007/bf02683844"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1090/s0002-9939-1994-1189747-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016285177"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bfb0095676", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016802120", 
              "https://doi.org/10.1007/bfb0095676"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s002080000122", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018180254", 
              "https://doi.org/10.1007/s002080000122"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1214/aop/1176989392", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064403725"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.4171/zaa/1328", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1072321885"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.4310/cag.1993.v1.n4.a4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1072457506"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.4310/cag.2001.v9.n5.a2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1072457701"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.4064/sm-73-3-225-251", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092013775"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1090/surv/062", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1098741760"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2009-04", 
        "datePublishedReg": "2009-04-01", 
        "description": "This note is devoted to the differentiability properties of -Lipschitz maps defined on abstract Wiener spaces and with values in metric spaces (Y,dY). We prove the existence \u03b3-a.e. of local seminorms in the Cameron-Martin space which allow to compute the metric derivative of the map.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s12215-009-0001-7", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1136673", 
            "issn": [
              "0009-725X", 
              "1973-4409"
            ], 
            "name": "Rendiconti del Circolo Matematico di Palermo Series 2", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "58"
          }
        ], 
        "name": "Metric differentiability of Lipschitz maps defined on Wiener spaces", 
        "pagination": "1-10", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "2ee4cac59ca051cbed215c5082ac956349cbd222918417fa68d457e81116be91"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s12215-009-0001-7"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1009843448"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s12215-009-0001-7", 
          "https://app.dimensions.ai/details/publication/pub.1009843448"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T09:19", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000339_0000000339/records_109508_00000000.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007%2Fs12215-009-0001-7"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12215-009-0001-7'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12215-009-0001-7'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12215-009-0001-7'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12215-009-0001-7'


     

    This table displays all metadata directly associated to this object as RDF triples.

    96 TRIPLES      20 PREDICATES      35 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s12215-009-0001-7 schema:author N70965a3c93514763ad9158fea6a67c04
    2 schema:citation sg:pub.10.1007/bf02683844
    3 sg:pub.10.1007/bfb0095676
    4 sg:pub.10.1007/s002080000122
    5 https://doi.org/10.1090/s0002-9939-1994-1189747-7
    6 https://doi.org/10.1090/surv/062
    7 https://doi.org/10.1214/aop/1176989392
    8 https://doi.org/10.4064/sm-73-3-225-251
    9 https://doi.org/10.4171/zaa/1328
    10 https://doi.org/10.4310/cag.1993.v1.n4.a4
    11 https://doi.org/10.4310/cag.2001.v9.n5.a2
    12 schema:datePublished 2009-04
    13 schema:datePublishedReg 2009-04-01
    14 schema:description This note is devoted to the differentiability properties of -Lipschitz maps defined on abstract Wiener spaces and with values in metric spaces (Y,dY). We prove the existence γ-a.e. of local seminorms in the Cameron-Martin space which allow to compute the metric derivative of the map.
    15 schema:genre research_article
    16 schema:inLanguage en
    17 schema:isAccessibleForFree false
    18 schema:isPartOf N7ab521d3b686453d9f57e7d7918b5187
    19 Na3a873e748514d4aaa425ec576dbb610
    20 sg:journal.1136673
    21 schema:name Metric differentiability of Lipschitz maps defined on Wiener spaces
    22 schema:pagination 1-10
    23 schema:productId N13970010e1f94e62ae5247c7e60e6b27
    24 N61bf65ae4543480f87afc16092e66898
    25 N8fa7d6b8ccef4037b1c179d80011422e
    26 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009843448
    27 https://doi.org/10.1007/s12215-009-0001-7
    28 schema:sdDatePublished 2019-04-11T09:19
    29 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    30 schema:sdPublisher N44bb429eb9ea49a49292eebf66bd2834
    31 schema:url http://link.springer.com/10.1007%2Fs12215-009-0001-7
    32 sgo:license sg:explorer/license/
    33 sgo:sdDataset articles
    34 rdf:type schema:ScholarlyArticle
    35 N13970010e1f94e62ae5247c7e60e6b27 schema:name doi
    36 schema:value 10.1007/s12215-009-0001-7
    37 rdf:type schema:PropertyValue
    38 N4307e1828c9847b3abbd2b8238e3155e rdf:first sg:person.010706372537.35
    39 rdf:rest rdf:nil
    40 N44bb429eb9ea49a49292eebf66bd2834 schema:name Springer Nature - SN SciGraph project
    41 rdf:type schema:Organization
    42 N61bf65ae4543480f87afc16092e66898 schema:name readcube_id
    43 schema:value 2ee4cac59ca051cbed215c5082ac956349cbd222918417fa68d457e81116be91
    44 rdf:type schema:PropertyValue
    45 N70965a3c93514763ad9158fea6a67c04 rdf:first sg:person.012621721115.68
    46 rdf:rest N4307e1828c9847b3abbd2b8238e3155e
    47 N7ab521d3b686453d9f57e7d7918b5187 schema:volumeNumber 58
    48 rdf:type schema:PublicationVolume
    49 N8fa7d6b8ccef4037b1c179d80011422e schema:name dimensions_id
    50 schema:value pub.1009843448
    51 rdf:type schema:PropertyValue
    52 Na3a873e748514d4aaa425ec576dbb610 schema:issueNumber 1
    53 rdf:type schema:PublicationIssue
    54 sg:journal.1136673 schema:issn 0009-725X
    55 1973-4409
    56 schema:name Rendiconti del Circolo Matematico di Palermo Series 2
    57 rdf:type schema:Periodical
    58 sg:person.010706372537.35 schema:affiliation https://www.grid.ac/institutes/grid.4795.f
    59 schema:familyName Durand-Cartagena
    60 schema:givenName Estibalitz
    61 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010706372537.35
    62 rdf:type schema:Person
    63 sg:person.012621721115.68 schema:affiliation https://www.grid.ac/institutes/grid.6093.c
    64 schema:familyName Ambrosio
    65 schema:givenName Luigi
    66 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012621721115.68
    67 rdf:type schema:Person
    68 sg:pub.10.1007/bf02683844 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005378387
    69 https://doi.org/10.1007/bf02683844
    70 rdf:type schema:CreativeWork
    71 sg:pub.10.1007/bfb0095676 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016802120
    72 https://doi.org/10.1007/bfb0095676
    73 rdf:type schema:CreativeWork
    74 sg:pub.10.1007/s002080000122 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018180254
    75 https://doi.org/10.1007/s002080000122
    76 rdf:type schema:CreativeWork
    77 https://doi.org/10.1090/s0002-9939-1994-1189747-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016285177
    78 rdf:type schema:CreativeWork
    79 https://doi.org/10.1090/surv/062 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098741760
    80 rdf:type schema:CreativeWork
    81 https://doi.org/10.1214/aop/1176989392 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064403725
    82 rdf:type schema:CreativeWork
    83 https://doi.org/10.4064/sm-73-3-225-251 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092013775
    84 rdf:type schema:CreativeWork
    85 https://doi.org/10.4171/zaa/1328 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072321885
    86 rdf:type schema:CreativeWork
    87 https://doi.org/10.4310/cag.1993.v1.n4.a4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072457506
    88 rdf:type schema:CreativeWork
    89 https://doi.org/10.4310/cag.2001.v9.n5.a2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072457701
    90 rdf:type schema:CreativeWork
    91 https://www.grid.ac/institutes/grid.4795.f schema:alternateName Complutense University of Madrid
    92 schema:name Departamento de Análisis Matemático, Facultad de Ciencias Matemáticas, Universidad Complutense de Madrid, 28040, Madrid, Spain
    93 rdf:type schema:Organization
    94 https://www.grid.ac/institutes/grid.6093.c schema:alternateName Scuola Normale Superiore di Pisa
    95 schema:name Classe di Scienze, Scuola Normale Superiore, Piazza Cavalieri 7, 56100, Pisa, Italy
    96 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...