Refined composite multiscale fuzzy entropy: Localized defect detection of rolling element bearing View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-01

AUTHORS

Yongjian Li, Bingrong Miao, Weihua Zhang, Peng Chen, Jihua Liu, Xiaoliang Jiang

ABSTRACT

We proposed an appealing method based on refined composite multiscale fuzzy entropy (RCMFE), infinite feature selection (Inf-FS) algorithm, and support vector machine (SVM) for implementing localized defect detection to keep the downtime and extended damage caused by incipient failure of bearing at a minimum. As a useful approach, multiscale fuzzy entropy (MFE) was utilized to measure the complexity and dynamic changes of signals. However, an inaccurate entropy value would be yielded with the increase of scale factor. Here, as an improvement version of MFE, the RCMFE was proposed to address the shortcomings in the case of short time series. For this novel method, we conducted a full investigation of the effects and robustness by comparing the proposed method with two other entropy-based approaches using synthetic signals and real data. Results indicate that the proposed algorithm outperforms the other approaches in terms of reliability and stability. The RCMFE values of bearing signals from one healthy condition and seven fault states are calculated as diagnostic information. Moreover, an intelligent fault identification method was constructed by combining the Inf-FS algorithm and SVM classifier. Experimental results show the usefulness of the proposed strategy. More... »

PAGES

109-120

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s12206-018-1211-8

DOI

http://dx.doi.org/10.1007/s12206-018-1211-8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1111402376


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Xihua University", 
          "id": "https://www.grid.ac/institutes/grid.412983.5", 
          "name": [
            "School of Railway Tracks and Transportation, Wuyi University, 529020, Jiangmen, China", 
            "State Key Laboratory of Traction Power, Southwest Jiaotong University, 610031, Chengdu, China", 
            "Key Laboratory of Automotive Measurement, Control and Safety, Xihua University, 610039, Chengdu, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Yongjian", 
        "id": "sg:person.016255470515.97", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016255470515.97"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Southwest Jiaotong University", 
          "id": "https://www.grid.ac/institutes/grid.263901.f", 
          "name": [
            "State Key Laboratory of Traction Power, Southwest Jiaotong University, 610031, Chengdu, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Miao", 
        "givenName": "Bingrong", 
        "id": "sg:person.010026770373.92", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010026770373.92"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Southwest Jiaotong University", 
          "id": "https://www.grid.ac/institutes/grid.263901.f", 
          "name": [
            "State Key Laboratory of Traction Power, Southwest Jiaotong University, 610031, Chengdu, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Weihua", 
        "id": "sg:person.014325650341.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014325650341.22"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Southwest Jiaotong University", 
          "id": "https://www.grid.ac/institutes/grid.263901.f", 
          "name": [
            "School of Mechanical Engineering, Southwest Jiaotong University, 610031, Chengdu, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chen", 
        "givenName": "Peng", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Wuyi University", 
          "id": "https://www.grid.ac/institutes/grid.500400.1", 
          "name": [
            "School of Railway Tracks and Transportation, Wuyi University, 529020, Jiangmen, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "Jihua", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Quzhou University", 
          "id": "https://www.grid.ac/institutes/grid.469579.0", 
          "name": [
            "College of Mechanical Engineering, Quzhou University, 324000, Quzhou, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jiang", 
        "givenName": "Xiaoliang", 
        "id": "sg:person.012330447642.45", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012330447642.45"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1006/mssp.1997.0115", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005919850"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ymssp.2015.09.042", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018741628"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1155/2016/5714195", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019221316"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jsv.2015.12.020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019481643"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.mechmachtheory.2015.11.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019628948"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ymssp.2014.08.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022091512"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.brainresbull.2015.05.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032229399"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.mechmachtheory.2014.03.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033332279"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.clinph.2014.07.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033884378"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cmpb.2010.12.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037238218"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.triboint.2015.12.037", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038369321"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physleta.2014.03.034", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039251222"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.eswa.2009.11.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040117557"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/e14081343", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045467446"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/e18070242", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050598065"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-460x(84)90595-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052264152"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-460x(84)90595-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052264152"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.71.021906", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060732566"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.71.021906", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060732566"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.89.068102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060825158"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.89.068102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060825158"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tnsre.2007.897025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061740244"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12206-017-0514-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1086153391", 
          "https://doi.org/10.1007/s12206-017-0514-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12206-017-0514-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1086153391", 
          "https://doi.org/10.1007/s12206-017-0514-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00170-017-1309-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092616270", 
          "https://doi.org/10.1007/s00170-017-1309-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icnn.1995.488968", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093669333"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12206-018-0102-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101056979", 
          "https://doi.org/10.1007/s12206-018-0102-8"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-01", 
    "datePublishedReg": "2019-01-01", 
    "description": "We proposed an appealing method based on refined composite multiscale fuzzy entropy (RCMFE), infinite feature selection (Inf-FS) algorithm, and support vector machine (SVM) for implementing localized defect detection to keep the downtime and extended damage caused by incipient failure of bearing at a minimum. As a useful approach, multiscale fuzzy entropy (MFE) was utilized to measure the complexity and dynamic changes of signals. However, an inaccurate entropy value would be yielded with the increase of scale factor. Here, as an improvement version of MFE, the RCMFE was proposed to address the shortcomings in the case of short time series. For this novel method, we conducted a full investigation of the effects and robustness by comparing the proposed method with two other entropy-based approaches using synthetic signals and real data. Results indicate that the proposed algorithm outperforms the other approaches in terms of reliability and stability. The RCMFE values of bearing signals from one healthy condition and seven fault states are calculated as diagnostic information. Moreover, an intelligent fault identification method was constructed by combining the Inf-FS algorithm and SVM classifier. Experimental results show the usefulness of the proposed strategy.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s12206-018-1211-8", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1295111", 
        "issn": [
          "1011-8861", 
          "1226-4865"
        ], 
        "name": "Journal of Mechanical Science and Technology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "33"
      }
    ], 
    "name": "Refined composite multiscale fuzzy entropy: Localized defect detection of rolling element bearing", 
    "pagination": "109-120", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "31967acfd5ab281e13ab9838da8432cafc0e9bf8527f62601d71c6227b0bd5b8"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s12206-018-1211-8"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1111402376"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s12206-018-1211-8", 
      "https://app.dimensions.ai/details/publication/pub.1111402376"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T08:40", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000319_0000000319/records_11231_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs12206-018-1211-8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12206-018-1211-8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12206-018-1211-8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12206-018-1211-8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12206-018-1211-8'


 

This table displays all metadata directly associated to this object as RDF triples.

178 TRIPLES      21 PREDICATES      50 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s12206-018-1211-8 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N4d1e12d80a8d498fabb2f50e45ef85b6
4 schema:citation sg:pub.10.1007/s00170-017-1309-7
5 sg:pub.10.1007/s12206-017-0514-5
6 sg:pub.10.1007/s12206-018-0102-8
7 https://doi.org/10.1006/mssp.1997.0115
8 https://doi.org/10.1016/0022-460x(84)90595-9
9 https://doi.org/10.1016/j.brainresbull.2015.05.001
10 https://doi.org/10.1016/j.clinph.2014.07.012
11 https://doi.org/10.1016/j.cmpb.2010.12.003
12 https://doi.org/10.1016/j.eswa.2009.11.006
13 https://doi.org/10.1016/j.jsv.2015.12.020
14 https://doi.org/10.1016/j.mechmachtheory.2014.03.014
15 https://doi.org/10.1016/j.mechmachtheory.2015.11.010
16 https://doi.org/10.1016/j.physleta.2014.03.034
17 https://doi.org/10.1016/j.triboint.2015.12.037
18 https://doi.org/10.1016/j.ymssp.2014.08.007
19 https://doi.org/10.1016/j.ymssp.2015.09.042
20 https://doi.org/10.1103/physreve.71.021906
21 https://doi.org/10.1103/physrevlett.89.068102
22 https://doi.org/10.1109/icnn.1995.488968
23 https://doi.org/10.1109/tnsre.2007.897025
24 https://doi.org/10.1155/2016/5714195
25 https://doi.org/10.3390/e14081343
26 https://doi.org/10.3390/e18070242
27 schema:datePublished 2019-01
28 schema:datePublishedReg 2019-01-01
29 schema:description We proposed an appealing method based on refined composite multiscale fuzzy entropy (RCMFE), infinite feature selection (Inf-FS) algorithm, and support vector machine (SVM) for implementing localized defect detection to keep the downtime and extended damage caused by incipient failure of bearing at a minimum. As a useful approach, multiscale fuzzy entropy (MFE) was utilized to measure the complexity and dynamic changes of signals. However, an inaccurate entropy value would be yielded with the increase of scale factor. Here, as an improvement version of MFE, the RCMFE was proposed to address the shortcomings in the case of short time series. For this novel method, we conducted a full investigation of the effects and robustness by comparing the proposed method with two other entropy-based approaches using synthetic signals and real data. Results indicate that the proposed algorithm outperforms the other approaches in terms of reliability and stability. The RCMFE values of bearing signals from one healthy condition and seven fault states are calculated as diagnostic information. Moreover, an intelligent fault identification method was constructed by combining the Inf-FS algorithm and SVM classifier. Experimental results show the usefulness of the proposed strategy.
30 schema:genre research_article
31 schema:inLanguage en
32 schema:isAccessibleForFree false
33 schema:isPartOf N675e548d52d24c3db98358c70d16d0d4
34 N87f09759828d4e45a4e97c3674556774
35 sg:journal.1295111
36 schema:name Refined composite multiscale fuzzy entropy: Localized defect detection of rolling element bearing
37 schema:pagination 109-120
38 schema:productId N08fbbc24199445e3b9713bc27fea14cc
39 N89c1fdbf2ad741b6810ec43136caf899
40 Nf974840a603b449583c8aad6021515e9
41 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111402376
42 https://doi.org/10.1007/s12206-018-1211-8
43 schema:sdDatePublished 2019-04-11T08:40
44 schema:sdLicense https://scigraph.springernature.com/explorer/license/
45 schema:sdPublisher Nd74ac94db9ef4c579aaa0b253c17449a
46 schema:url https://link.springer.com/10.1007%2Fs12206-018-1211-8
47 sgo:license sg:explorer/license/
48 sgo:sdDataset articles
49 rdf:type schema:ScholarlyArticle
50 N08fbbc24199445e3b9713bc27fea14cc schema:name readcube_id
51 schema:value 31967acfd5ab281e13ab9838da8432cafc0e9bf8527f62601d71c6227b0bd5b8
52 rdf:type schema:PropertyValue
53 N14f9bb7cd9ed403e99c4047b4b94bc48 schema:affiliation https://www.grid.ac/institutes/grid.500400.1
54 schema:familyName Liu
55 schema:givenName Jihua
56 rdf:type schema:Person
57 N386596104e7743a59f49904db9a57364 rdf:first N14f9bb7cd9ed403e99c4047b4b94bc48
58 rdf:rest Na9f8f402a02548a69db3394585941d0e
59 N43d6a0199cd94944bb2722227e834728 rdf:first N53e682e3cc184b278423c7207f506d4a
60 rdf:rest N386596104e7743a59f49904db9a57364
61 N4d1e12d80a8d498fabb2f50e45ef85b6 rdf:first sg:person.016255470515.97
62 rdf:rest N768830a04237444696b3402ab75b842e
63 N53e682e3cc184b278423c7207f506d4a schema:affiliation https://www.grid.ac/institutes/grid.263901.f
64 schema:familyName Chen
65 schema:givenName Peng
66 rdf:type schema:Person
67 N675e548d52d24c3db98358c70d16d0d4 schema:issueNumber 1
68 rdf:type schema:PublicationIssue
69 N7467806dda4346c484d3ff39474de2c2 rdf:first sg:person.014325650341.22
70 rdf:rest N43d6a0199cd94944bb2722227e834728
71 N768830a04237444696b3402ab75b842e rdf:first sg:person.010026770373.92
72 rdf:rest N7467806dda4346c484d3ff39474de2c2
73 N87f09759828d4e45a4e97c3674556774 schema:volumeNumber 33
74 rdf:type schema:PublicationVolume
75 N89c1fdbf2ad741b6810ec43136caf899 schema:name dimensions_id
76 schema:value pub.1111402376
77 rdf:type schema:PropertyValue
78 Na9f8f402a02548a69db3394585941d0e rdf:first sg:person.012330447642.45
79 rdf:rest rdf:nil
80 Nd74ac94db9ef4c579aaa0b253c17449a schema:name Springer Nature - SN SciGraph project
81 rdf:type schema:Organization
82 Nf974840a603b449583c8aad6021515e9 schema:name doi
83 schema:value 10.1007/s12206-018-1211-8
84 rdf:type schema:PropertyValue
85 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
86 schema:name Information and Computing Sciences
87 rdf:type schema:DefinedTerm
88 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
89 schema:name Artificial Intelligence and Image Processing
90 rdf:type schema:DefinedTerm
91 sg:journal.1295111 schema:issn 1011-8861
92 1226-4865
93 schema:name Journal of Mechanical Science and Technology
94 rdf:type schema:Periodical
95 sg:person.010026770373.92 schema:affiliation https://www.grid.ac/institutes/grid.263901.f
96 schema:familyName Miao
97 schema:givenName Bingrong
98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010026770373.92
99 rdf:type schema:Person
100 sg:person.012330447642.45 schema:affiliation https://www.grid.ac/institutes/grid.469579.0
101 schema:familyName Jiang
102 schema:givenName Xiaoliang
103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012330447642.45
104 rdf:type schema:Person
105 sg:person.014325650341.22 schema:affiliation https://www.grid.ac/institutes/grid.263901.f
106 schema:familyName Zhang
107 schema:givenName Weihua
108 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014325650341.22
109 rdf:type schema:Person
110 sg:person.016255470515.97 schema:affiliation https://www.grid.ac/institutes/grid.412983.5
111 schema:familyName Li
112 schema:givenName Yongjian
113 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016255470515.97
114 rdf:type schema:Person
115 sg:pub.10.1007/s00170-017-1309-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092616270
116 https://doi.org/10.1007/s00170-017-1309-7
117 rdf:type schema:CreativeWork
118 sg:pub.10.1007/s12206-017-0514-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086153391
119 https://doi.org/10.1007/s12206-017-0514-5
120 rdf:type schema:CreativeWork
121 sg:pub.10.1007/s12206-018-0102-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101056979
122 https://doi.org/10.1007/s12206-018-0102-8
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1006/mssp.1997.0115 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005919850
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1016/0022-460x(84)90595-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052264152
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1016/j.brainresbull.2015.05.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032229399
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1016/j.clinph.2014.07.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033884378
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1016/j.cmpb.2010.12.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037238218
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1016/j.eswa.2009.11.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040117557
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1016/j.jsv.2015.12.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019481643
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1016/j.mechmachtheory.2014.03.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033332279
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1016/j.mechmachtheory.2015.11.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019628948
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1016/j.physleta.2014.03.034 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039251222
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1016/j.triboint.2015.12.037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038369321
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1016/j.ymssp.2014.08.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022091512
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1016/j.ymssp.2015.09.042 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018741628
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1103/physreve.71.021906 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060732566
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1103/physrevlett.89.068102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060825158
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1109/icnn.1995.488968 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093669333
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1109/tnsre.2007.897025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061740244
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1155/2016/5714195 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019221316
159 rdf:type schema:CreativeWork
160 https://doi.org/10.3390/e14081343 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045467446
161 rdf:type schema:CreativeWork
162 https://doi.org/10.3390/e18070242 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050598065
163 rdf:type schema:CreativeWork
164 https://www.grid.ac/institutes/grid.263901.f schema:alternateName Southwest Jiaotong University
165 schema:name School of Mechanical Engineering, Southwest Jiaotong University, 610031, Chengdu, China
166 State Key Laboratory of Traction Power, Southwest Jiaotong University, 610031, Chengdu, China
167 rdf:type schema:Organization
168 https://www.grid.ac/institutes/grid.412983.5 schema:alternateName Xihua University
169 schema:name Key Laboratory of Automotive Measurement, Control and Safety, Xihua University, 610039, Chengdu, China
170 School of Railway Tracks and Transportation, Wuyi University, 529020, Jiangmen, China
171 State Key Laboratory of Traction Power, Southwest Jiaotong University, 610031, Chengdu, China
172 rdf:type schema:Organization
173 https://www.grid.ac/institutes/grid.469579.0 schema:alternateName Quzhou University
174 schema:name College of Mechanical Engineering, Quzhou University, 324000, Quzhou, China
175 rdf:type schema:Organization
176 https://www.grid.ac/institutes/grid.500400.1 schema:alternateName Wuyi University
177 schema:name School of Railway Tracks and Transportation, Wuyi University, 529020, Jiangmen, China
178 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...