Refined composite multiscale fuzzy entropy: Localized defect detection of rolling element bearing View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-01

AUTHORS

Yongjian Li, Bingrong Miao, Weihua Zhang, Peng Chen, Jihua Liu, Xiaoliang Jiang

ABSTRACT

We proposed an appealing method based on refined composite multiscale fuzzy entropy (RCMFE), infinite feature selection (Inf-FS) algorithm, and support vector machine (SVM) for implementing localized defect detection to keep the downtime and extended damage caused by incipient failure of bearing at a minimum. As a useful approach, multiscale fuzzy entropy (MFE) was utilized to measure the complexity and dynamic changes of signals. However, an inaccurate entropy value would be yielded with the increase of scale factor. Here, as an improvement version of MFE, the RCMFE was proposed to address the shortcomings in the case of short time series. For this novel method, we conducted a full investigation of the effects and robustness by comparing the proposed method with two other entropy-based approaches using synthetic signals and real data. Results indicate that the proposed algorithm outperforms the other approaches in terms of reliability and stability. The RCMFE values of bearing signals from one healthy condition and seven fault states are calculated as diagnostic information. Moreover, an intelligent fault identification method was constructed by combining the Inf-FS algorithm and SVM classifier. Experimental results show the usefulness of the proposed strategy. More... »

PAGES

109-120

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s12206-018-1211-8

DOI

http://dx.doi.org/10.1007/s12206-018-1211-8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1111402376


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Xihua University", 
          "id": "https://www.grid.ac/institutes/grid.412983.5", 
          "name": [
            "School of Railway Tracks and Transportation, Wuyi University, 529020, Jiangmen, China", 
            "State Key Laboratory of Traction Power, Southwest Jiaotong University, 610031, Chengdu, China", 
            "Key Laboratory of Automotive Measurement, Control and Safety, Xihua University, 610039, Chengdu, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Yongjian", 
        "id": "sg:person.016255470515.97", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016255470515.97"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Southwest Jiaotong University", 
          "id": "https://www.grid.ac/institutes/grid.263901.f", 
          "name": [
            "State Key Laboratory of Traction Power, Southwest Jiaotong University, 610031, Chengdu, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Miao", 
        "givenName": "Bingrong", 
        "id": "sg:person.010026770373.92", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010026770373.92"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Southwest Jiaotong University", 
          "id": "https://www.grid.ac/institutes/grid.263901.f", 
          "name": [
            "State Key Laboratory of Traction Power, Southwest Jiaotong University, 610031, Chengdu, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Weihua", 
        "id": "sg:person.014325650341.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014325650341.22"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Southwest Jiaotong University", 
          "id": "https://www.grid.ac/institutes/grid.263901.f", 
          "name": [
            "School of Mechanical Engineering, Southwest Jiaotong University, 610031, Chengdu, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chen", 
        "givenName": "Peng", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Wuyi University", 
          "id": "https://www.grid.ac/institutes/grid.500400.1", 
          "name": [
            "School of Railway Tracks and Transportation, Wuyi University, 529020, Jiangmen, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "Jihua", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Quzhou University", 
          "id": "https://www.grid.ac/institutes/grid.469579.0", 
          "name": [
            "College of Mechanical Engineering, Quzhou University, 324000, Quzhou, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jiang", 
        "givenName": "Xiaoliang", 
        "id": "sg:person.012330447642.45", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012330447642.45"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1006/mssp.1997.0115", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005919850"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ymssp.2015.09.042", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018741628"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1155/2016/5714195", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019221316"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jsv.2015.12.020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019481643"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.mechmachtheory.2015.11.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019628948"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ymssp.2014.08.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022091512"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.brainresbull.2015.05.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032229399"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.mechmachtheory.2014.03.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033332279"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.clinph.2014.07.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033884378"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cmpb.2010.12.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037238218"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.triboint.2015.12.037", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038369321"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physleta.2014.03.034", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039251222"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.eswa.2009.11.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040117557"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/e14081343", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045467446"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/e18070242", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050598065"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-460x(84)90595-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052264152"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-460x(84)90595-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052264152"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.71.021906", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060732566"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.71.021906", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060732566"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.89.068102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060825158"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.89.068102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060825158"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tnsre.2007.897025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061740244"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12206-017-0514-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1086153391", 
          "https://doi.org/10.1007/s12206-017-0514-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12206-017-0514-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1086153391", 
          "https://doi.org/10.1007/s12206-017-0514-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00170-017-1309-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092616270", 
          "https://doi.org/10.1007/s00170-017-1309-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icnn.1995.488968", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093669333"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12206-018-0102-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101056979", 
          "https://doi.org/10.1007/s12206-018-0102-8"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-01", 
    "datePublishedReg": "2019-01-01", 
    "description": "We proposed an appealing method based on refined composite multiscale fuzzy entropy (RCMFE), infinite feature selection (Inf-FS) algorithm, and support vector machine (SVM) for implementing localized defect detection to keep the downtime and extended damage caused by incipient failure of bearing at a minimum. As a useful approach, multiscale fuzzy entropy (MFE) was utilized to measure the complexity and dynamic changes of signals. However, an inaccurate entropy value would be yielded with the increase of scale factor. Here, as an improvement version of MFE, the RCMFE was proposed to address the shortcomings in the case of short time series. For this novel method, we conducted a full investigation of the effects and robustness by comparing the proposed method with two other entropy-based approaches using synthetic signals and real data. Results indicate that the proposed algorithm outperforms the other approaches in terms of reliability and stability. The RCMFE values of bearing signals from one healthy condition and seven fault states are calculated as diagnostic information. Moreover, an intelligent fault identification method was constructed by combining the Inf-FS algorithm and SVM classifier. Experimental results show the usefulness of the proposed strategy.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s12206-018-1211-8", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1295111", 
        "issn": [
          "1011-8861", 
          "1226-4865"
        ], 
        "name": "Journal of Mechanical Science and Technology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "33"
      }
    ], 
    "name": "Refined composite multiscale fuzzy entropy: Localized defect detection of rolling element bearing", 
    "pagination": "109-120", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "31967acfd5ab281e13ab9838da8432cafc0e9bf8527f62601d71c6227b0bd5b8"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s12206-018-1211-8"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1111402376"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s12206-018-1211-8", 
      "https://app.dimensions.ai/details/publication/pub.1111402376"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T08:40", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000319_0000000319/records_11231_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs12206-018-1211-8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12206-018-1211-8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12206-018-1211-8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12206-018-1211-8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12206-018-1211-8'


 

This table displays all metadata directly associated to this object as RDF triples.

178 TRIPLES      21 PREDICATES      50 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s12206-018-1211-8 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N784283db9e844fc2bbba2eebd1ae4d2f
4 schema:citation sg:pub.10.1007/s00170-017-1309-7
5 sg:pub.10.1007/s12206-017-0514-5
6 sg:pub.10.1007/s12206-018-0102-8
7 https://doi.org/10.1006/mssp.1997.0115
8 https://doi.org/10.1016/0022-460x(84)90595-9
9 https://doi.org/10.1016/j.brainresbull.2015.05.001
10 https://doi.org/10.1016/j.clinph.2014.07.012
11 https://doi.org/10.1016/j.cmpb.2010.12.003
12 https://doi.org/10.1016/j.eswa.2009.11.006
13 https://doi.org/10.1016/j.jsv.2015.12.020
14 https://doi.org/10.1016/j.mechmachtheory.2014.03.014
15 https://doi.org/10.1016/j.mechmachtheory.2015.11.010
16 https://doi.org/10.1016/j.physleta.2014.03.034
17 https://doi.org/10.1016/j.triboint.2015.12.037
18 https://doi.org/10.1016/j.ymssp.2014.08.007
19 https://doi.org/10.1016/j.ymssp.2015.09.042
20 https://doi.org/10.1103/physreve.71.021906
21 https://doi.org/10.1103/physrevlett.89.068102
22 https://doi.org/10.1109/icnn.1995.488968
23 https://doi.org/10.1109/tnsre.2007.897025
24 https://doi.org/10.1155/2016/5714195
25 https://doi.org/10.3390/e14081343
26 https://doi.org/10.3390/e18070242
27 schema:datePublished 2019-01
28 schema:datePublishedReg 2019-01-01
29 schema:description We proposed an appealing method based on refined composite multiscale fuzzy entropy (RCMFE), infinite feature selection (Inf-FS) algorithm, and support vector machine (SVM) for implementing localized defect detection to keep the downtime and extended damage caused by incipient failure of bearing at a minimum. As a useful approach, multiscale fuzzy entropy (MFE) was utilized to measure the complexity and dynamic changes of signals. However, an inaccurate entropy value would be yielded with the increase of scale factor. Here, as an improvement version of MFE, the RCMFE was proposed to address the shortcomings in the case of short time series. For this novel method, we conducted a full investigation of the effects and robustness by comparing the proposed method with two other entropy-based approaches using synthetic signals and real data. Results indicate that the proposed algorithm outperforms the other approaches in terms of reliability and stability. The RCMFE values of bearing signals from one healthy condition and seven fault states are calculated as diagnostic information. Moreover, an intelligent fault identification method was constructed by combining the Inf-FS algorithm and SVM classifier. Experimental results show the usefulness of the proposed strategy.
30 schema:genre research_article
31 schema:inLanguage en
32 schema:isAccessibleForFree false
33 schema:isPartOf N74452683675d470098e2131a5e937f69
34 Nc7d84e2c5b6748e584495d29299bfc9a
35 sg:journal.1295111
36 schema:name Refined composite multiscale fuzzy entropy: Localized defect detection of rolling element bearing
37 schema:pagination 109-120
38 schema:productId N0e958ec619114362a3dea6778c85b47d
39 N162edfc69ed3429bb2c9bdd0d3a7b757
40 Ndb63d3d96bc44013b76ef5fba886f54f
41 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111402376
42 https://doi.org/10.1007/s12206-018-1211-8
43 schema:sdDatePublished 2019-04-11T08:40
44 schema:sdLicense https://scigraph.springernature.com/explorer/license/
45 schema:sdPublisher Ncb5d4f1aec594f8d87b56d01c497497c
46 schema:url https://link.springer.com/10.1007%2Fs12206-018-1211-8
47 sgo:license sg:explorer/license/
48 sgo:sdDataset articles
49 rdf:type schema:ScholarlyArticle
50 N0e958ec619114362a3dea6778c85b47d schema:name dimensions_id
51 schema:value pub.1111402376
52 rdf:type schema:PropertyValue
53 N162edfc69ed3429bb2c9bdd0d3a7b757 schema:name readcube_id
54 schema:value 31967acfd5ab281e13ab9838da8432cafc0e9bf8527f62601d71c6227b0bd5b8
55 rdf:type schema:PropertyValue
56 N1b94c4d129034859bf966d107f38e82e rdf:first sg:person.014325650341.22
57 rdf:rest Nf201cfbe85e84ef2a8eb25f3dc126706
58 N4f9810619aab4d82928bd23bc037416c rdf:first Nf89edf1c84104497b35e7ded975c1c9a
59 rdf:rest Ne1f10de1510d407da0d9cfb0032cbf0f
60 N74452683675d470098e2131a5e937f69 schema:volumeNumber 33
61 rdf:type schema:PublicationVolume
62 N784283db9e844fc2bbba2eebd1ae4d2f rdf:first sg:person.016255470515.97
63 rdf:rest N7de8ab7119304a7986e5a32875b1b5ff
64 N7de8ab7119304a7986e5a32875b1b5ff rdf:first sg:person.010026770373.92
65 rdf:rest N1b94c4d129034859bf966d107f38e82e
66 Nc7d84e2c5b6748e584495d29299bfc9a schema:issueNumber 1
67 rdf:type schema:PublicationIssue
68 Ncb5d4f1aec594f8d87b56d01c497497c schema:name Springer Nature - SN SciGraph project
69 rdf:type schema:Organization
70 Ndb63d3d96bc44013b76ef5fba886f54f schema:name doi
71 schema:value 10.1007/s12206-018-1211-8
72 rdf:type schema:PropertyValue
73 Ne1f10de1510d407da0d9cfb0032cbf0f rdf:first sg:person.012330447642.45
74 rdf:rest rdf:nil
75 Nf201cfbe85e84ef2a8eb25f3dc126706 rdf:first Nf347bc9a95144b2c8f9f21f28b4ba8c7
76 rdf:rest N4f9810619aab4d82928bd23bc037416c
77 Nf347bc9a95144b2c8f9f21f28b4ba8c7 schema:affiliation https://www.grid.ac/institutes/grid.263901.f
78 schema:familyName Chen
79 schema:givenName Peng
80 rdf:type schema:Person
81 Nf89edf1c84104497b35e7ded975c1c9a schema:affiliation https://www.grid.ac/institutes/grid.500400.1
82 schema:familyName Liu
83 schema:givenName Jihua
84 rdf:type schema:Person
85 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
86 schema:name Information and Computing Sciences
87 rdf:type schema:DefinedTerm
88 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
89 schema:name Artificial Intelligence and Image Processing
90 rdf:type schema:DefinedTerm
91 sg:journal.1295111 schema:issn 1011-8861
92 1226-4865
93 schema:name Journal of Mechanical Science and Technology
94 rdf:type schema:Periodical
95 sg:person.010026770373.92 schema:affiliation https://www.grid.ac/institutes/grid.263901.f
96 schema:familyName Miao
97 schema:givenName Bingrong
98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010026770373.92
99 rdf:type schema:Person
100 sg:person.012330447642.45 schema:affiliation https://www.grid.ac/institutes/grid.469579.0
101 schema:familyName Jiang
102 schema:givenName Xiaoliang
103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012330447642.45
104 rdf:type schema:Person
105 sg:person.014325650341.22 schema:affiliation https://www.grid.ac/institutes/grid.263901.f
106 schema:familyName Zhang
107 schema:givenName Weihua
108 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014325650341.22
109 rdf:type schema:Person
110 sg:person.016255470515.97 schema:affiliation https://www.grid.ac/institutes/grid.412983.5
111 schema:familyName Li
112 schema:givenName Yongjian
113 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016255470515.97
114 rdf:type schema:Person
115 sg:pub.10.1007/s00170-017-1309-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092616270
116 https://doi.org/10.1007/s00170-017-1309-7
117 rdf:type schema:CreativeWork
118 sg:pub.10.1007/s12206-017-0514-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086153391
119 https://doi.org/10.1007/s12206-017-0514-5
120 rdf:type schema:CreativeWork
121 sg:pub.10.1007/s12206-018-0102-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101056979
122 https://doi.org/10.1007/s12206-018-0102-8
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1006/mssp.1997.0115 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005919850
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1016/0022-460x(84)90595-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052264152
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1016/j.brainresbull.2015.05.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032229399
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1016/j.clinph.2014.07.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033884378
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1016/j.cmpb.2010.12.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037238218
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1016/j.eswa.2009.11.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040117557
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1016/j.jsv.2015.12.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019481643
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1016/j.mechmachtheory.2014.03.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033332279
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1016/j.mechmachtheory.2015.11.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019628948
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1016/j.physleta.2014.03.034 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039251222
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1016/j.triboint.2015.12.037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038369321
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1016/j.ymssp.2014.08.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022091512
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1016/j.ymssp.2015.09.042 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018741628
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1103/physreve.71.021906 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060732566
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1103/physrevlett.89.068102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060825158
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1109/icnn.1995.488968 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093669333
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1109/tnsre.2007.897025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061740244
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1155/2016/5714195 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019221316
159 rdf:type schema:CreativeWork
160 https://doi.org/10.3390/e14081343 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045467446
161 rdf:type schema:CreativeWork
162 https://doi.org/10.3390/e18070242 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050598065
163 rdf:type schema:CreativeWork
164 https://www.grid.ac/institutes/grid.263901.f schema:alternateName Southwest Jiaotong University
165 schema:name School of Mechanical Engineering, Southwest Jiaotong University, 610031, Chengdu, China
166 State Key Laboratory of Traction Power, Southwest Jiaotong University, 610031, Chengdu, China
167 rdf:type schema:Organization
168 https://www.grid.ac/institutes/grid.412983.5 schema:alternateName Xihua University
169 schema:name Key Laboratory of Automotive Measurement, Control and Safety, Xihua University, 610039, Chengdu, China
170 School of Railway Tracks and Transportation, Wuyi University, 529020, Jiangmen, China
171 State Key Laboratory of Traction Power, Southwest Jiaotong University, 610031, Chengdu, China
172 rdf:type schema:Organization
173 https://www.grid.ac/institutes/grid.469579.0 schema:alternateName Quzhou University
174 schema:name College of Mechanical Engineering, Quzhou University, 324000, Quzhou, China
175 rdf:type schema:Organization
176 https://www.grid.ac/institutes/grid.500400.1 schema:alternateName Wuyi University
177 schema:name School of Railway Tracks and Transportation, Wuyi University, 529020, Jiangmen, China
178 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...