3D reconstruction of underwater scene for marine bioprospecting using remotely operated underwater vehicle (ROV) View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-11

AUTHORS

Youngeun Song, Suengjoon Choi, Changjoo Shin, Youngil Shin, Kiyong Cho, Hoeryong Jung

ABSTRACT

Marine bioprospecting is the procedure of identifying the characteristics of marine organisms to develop them into commercial products. This paper proposes a 3D reconstruction algorithm to facilitate 3D visualization of underwater scene for the marine bioprospecting using remotely operated underwater vehicle (ROV). It allows to provide an operator with intuitive user interface and accordingly contribute to enhance the operability of the ROV in the bioprospecting operation. The reconstruction algorithm transforms 2D pixel coordinates of the sonar image into the corresponding 3D spatial coordinates of the scene surface by restoring the surface elevation missing in the sonar image. First, the algorithm segments the objects and shadows in the image by classifying the pixels based on the intensity value of the seafloor. Second, it computes the surface elevation on the object pixels based on their intensity values. Third, the elevation correction factor, which is derived by the ratio between height of the object and the length of the shadow, is multiplied to the surface elevation value. Finally, the 3D coordinates of the scene surfaces are reconstructed using the coordinate transformation from the image plane to the seafloor with the restored surface elevation values. The experimental results show the algorithm successfully reconstructs the surface of the reference object within an error range less than 10 % of the object dimension, and practical applicability to the marine bioprospecting operation. More... »

PAGES

5541-5550

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s12206-018-1052-5

DOI

http://dx.doi.org/10.1007/s12206-018-1052-5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1110422111


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Hoseo University", 
          "id": "https://www.grid.ac/institutes/grid.412238.e", 
          "name": [
            "Department of Mechanical Engineering, Hoseo University, 31066, Cheonan, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Song", 
        "givenName": "Youngeun", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Korea Construction Equipment Technology Institute, 54004, Gunsan, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Choi", 
        "givenName": "Suengjoon", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Korea Institute of Ocean Science and Technology", 
          "id": "https://www.grid.ac/institutes/grid.410881.4", 
          "name": [
            "Korea Institute of Ocean Science and Technology, 49111, Busan, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shin", 
        "givenName": "Changjoo", 
        "id": "sg:person.015646771156.50", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015646771156.50"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Korea Construction Equipment Technology Institute, 54004, Gunsan, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shin", 
        "givenName": "Youngil", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Korea Construction Equipment Technology Institute, 54004, Gunsan, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cho", 
        "givenName": "Kiyong", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Konkuk University", 
          "id": "https://www.grid.ac/institutes/grid.258676.8", 
          "name": [
            "Department of Mechanical Engineering, Konkuk University, 05029, Seoul, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jung", 
        "givenName": "Hoeryong", 
        "id": "sg:person.01305741017.76", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01305741017.76"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-1-4615-2958-3_98", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004921070", 
          "https://doi.org/10.1007/978-1-4615-2958-3_98"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4419-8772-3_98", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018303819", 
          "https://doi.org/10.1007/978-1-4419-8772-3_98"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4419-8772-3_98", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018303819", 
          "https://doi.org/10.1007/978-1-4419-8772-3_98"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jembe.2015.05.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028967680"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.gecco.2014.11.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033196824"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tip.2006.888337", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061641646"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tip.2014.2358882", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061644111"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1121/1.2935303", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062318590"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3354/meps104257", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071171166"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.oceaneng.2017.03.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084099906"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.oceaneng.2017.10.046", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092545223"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/oceanse.2007.4302315", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094455509"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iros.2010.5649213", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094645077"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icsens.2014.6985208", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095577505"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/oceans.2004.1405509", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095786244"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-11", 
    "datePublishedReg": "2018-11-01", 
    "description": "Marine bioprospecting is the procedure of identifying the characteristics of marine organisms to develop them into commercial products. This paper proposes a 3D reconstruction algorithm to facilitate 3D visualization of underwater scene for the marine bioprospecting using remotely operated underwater vehicle (ROV). It allows to provide an operator with intuitive user interface and accordingly contribute to enhance the operability of the ROV in the bioprospecting operation. The reconstruction algorithm transforms 2D pixel coordinates of the sonar image into the corresponding 3D spatial coordinates of the scene surface by restoring the surface elevation missing in the sonar image. First, the algorithm segments the objects and shadows in the image by classifying the pixels based on the intensity value of the seafloor. Second, it computes the surface elevation on the object pixels based on their intensity values. Third, the elevation correction factor, which is derived by the ratio between height of the object and the length of the shadow, is multiplied to the surface elevation value. Finally, the 3D coordinates of the scene surfaces are reconstructed using the coordinate transformation from the image plane to the seafloor with the restored surface elevation values. The experimental results show the algorithm successfully reconstructs the surface of the reference object within an error range less than 10 % of the object dimension, and practical applicability to the marine bioprospecting operation.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s12206-018-1052-5", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1295111", 
        "issn": [
          "1011-8861", 
          "1226-4865"
        ], 
        "name": "Journal of Mechanical Science and Technology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "11", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "32"
      }
    ], 
    "name": "3D reconstruction of underwater scene for marine bioprospecting using remotely operated underwater vehicle (ROV)", 
    "pagination": "5541-5550", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "9878c9098bba227d2887eaaf690ffdd17c7a971ea5a362def6cdc00335bba096"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s12206-018-1052-5"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1110422111"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s12206-018-1052-5", 
      "https://app.dimensions.ai/details/publication/pub.1110422111"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T08:21", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000290_0000000290/records_34913_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs12206-018-1052-5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12206-018-1052-5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12206-018-1052-5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12206-018-1052-5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12206-018-1052-5'


 

This table displays all metadata directly associated to this object as RDF triples.

148 TRIPLES      21 PREDICATES      41 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s12206-018-1052-5 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author Ne16cc535bda146b2a002f1647b31fa23
4 schema:citation sg:pub.10.1007/978-1-4419-8772-3_98
5 sg:pub.10.1007/978-1-4615-2958-3_98
6 https://doi.org/10.1016/j.gecco.2014.11.015
7 https://doi.org/10.1016/j.jembe.2015.05.016
8 https://doi.org/10.1016/j.oceaneng.2017.03.014
9 https://doi.org/10.1016/j.oceaneng.2017.10.046
10 https://doi.org/10.1109/icsens.2014.6985208
11 https://doi.org/10.1109/iros.2010.5649213
12 https://doi.org/10.1109/oceans.2004.1405509
13 https://doi.org/10.1109/oceanse.2007.4302315
14 https://doi.org/10.1109/tip.2006.888337
15 https://doi.org/10.1109/tip.2014.2358882
16 https://doi.org/10.1121/1.2935303
17 https://doi.org/10.3354/meps104257
18 schema:datePublished 2018-11
19 schema:datePublishedReg 2018-11-01
20 schema:description Marine bioprospecting is the procedure of identifying the characteristics of marine organisms to develop them into commercial products. This paper proposes a 3D reconstruction algorithm to facilitate 3D visualization of underwater scene for the marine bioprospecting using remotely operated underwater vehicle (ROV). It allows to provide an operator with intuitive user interface and accordingly contribute to enhance the operability of the ROV in the bioprospecting operation. The reconstruction algorithm transforms 2D pixel coordinates of the sonar image into the corresponding 3D spatial coordinates of the scene surface by restoring the surface elevation missing in the sonar image. First, the algorithm segments the objects and shadows in the image by classifying the pixels based on the intensity value of the seafloor. Second, it computes the surface elevation on the object pixels based on their intensity values. Third, the elevation correction factor, which is derived by the ratio between height of the object and the length of the shadow, is multiplied to the surface elevation value. Finally, the 3D coordinates of the scene surfaces are reconstructed using the coordinate transformation from the image plane to the seafloor with the restored surface elevation values. The experimental results show the algorithm successfully reconstructs the surface of the reference object within an error range less than 10 % of the object dimension, and practical applicability to the marine bioprospecting operation.
21 schema:genre research_article
22 schema:inLanguage en
23 schema:isAccessibleForFree false
24 schema:isPartOf Nb4184e713ebf458c80d93cabf4637356
25 Nffb28b42fbb04de2aa029c4728442c0f
26 sg:journal.1295111
27 schema:name 3D reconstruction of underwater scene for marine bioprospecting using remotely operated underwater vehicle (ROV)
28 schema:pagination 5541-5550
29 schema:productId N25e8c5007ce6470888a845dcc9f62945
30 N332f64d9a3b4437fb8f8de727222b1bc
31 N90897e3302a744688a6b5fa992822626
32 schema:sameAs https://app.dimensions.ai/details/publication/pub.1110422111
33 https://doi.org/10.1007/s12206-018-1052-5
34 schema:sdDatePublished 2019-04-11T08:21
35 schema:sdLicense https://scigraph.springernature.com/explorer/license/
36 schema:sdPublisher N3e7c50db7c6d49db80b99322a5abf65a
37 schema:url https://link.springer.com/10.1007%2Fs12206-018-1052-5
38 sgo:license sg:explorer/license/
39 sgo:sdDataset articles
40 rdf:type schema:ScholarlyArticle
41 N0b5acce989ca4afc85338f3db2484ac4 rdf:first N919e28790dda4535bc33cb68fc5d059c
42 rdf:rest Na6c468934a494c41b60ac7f13f47114c
43 N25e8c5007ce6470888a845dcc9f62945 schema:name dimensions_id
44 schema:value pub.1110422111
45 rdf:type schema:PropertyValue
46 N2f0819dcff6b41e68117d8d85c263e09 schema:name Korea Construction Equipment Technology Institute, 54004, Gunsan, Korea
47 rdf:type schema:Organization
48 N332f64d9a3b4437fb8f8de727222b1bc schema:name doi
49 schema:value 10.1007/s12206-018-1052-5
50 rdf:type schema:PropertyValue
51 N3627dd5f6be04a438e5effee727bbe87 rdf:first N3df69db1877a4ae78159135a8e27afbf
52 rdf:rest N0b5acce989ca4afc85338f3db2484ac4
53 N3df69db1877a4ae78159135a8e27afbf schema:affiliation Ndd21d7427ba14809bc08ea8ceca24162
54 schema:familyName Shin
55 schema:givenName Youngil
56 rdf:type schema:Person
57 N3e7c50db7c6d49db80b99322a5abf65a schema:name Springer Nature - SN SciGraph project
58 rdf:type schema:Organization
59 N47baa0e7b1a942f6b1cdea66626619e9 rdf:first N524d6901315248f58ed837a9b0d8d9e0
60 rdf:rest N98f5db906dc74c06a8e875ba9ce1e592
61 N524d6901315248f58ed837a9b0d8d9e0 schema:affiliation N2f0819dcff6b41e68117d8d85c263e09
62 schema:familyName Choi
63 schema:givenName Suengjoon
64 rdf:type schema:Person
65 N90897e3302a744688a6b5fa992822626 schema:name readcube_id
66 schema:value 9878c9098bba227d2887eaaf690ffdd17c7a971ea5a362def6cdc00335bba096
67 rdf:type schema:PropertyValue
68 N919e28790dda4535bc33cb68fc5d059c schema:affiliation Nce7cafd91c1f460497d0b343b7c468ff
69 schema:familyName Cho
70 schema:givenName Kiyong
71 rdf:type schema:Person
72 N98f5db906dc74c06a8e875ba9ce1e592 rdf:first sg:person.015646771156.50
73 rdf:rest N3627dd5f6be04a438e5effee727bbe87
74 Na6c468934a494c41b60ac7f13f47114c rdf:first sg:person.01305741017.76
75 rdf:rest rdf:nil
76 Nb4184e713ebf458c80d93cabf4637356 schema:volumeNumber 32
77 rdf:type schema:PublicationVolume
78 Nccf0da9356974a1cbaf89ba71b708de7 schema:affiliation https://www.grid.ac/institutes/grid.412238.e
79 schema:familyName Song
80 schema:givenName Youngeun
81 rdf:type schema:Person
82 Nce7cafd91c1f460497d0b343b7c468ff schema:name Korea Construction Equipment Technology Institute, 54004, Gunsan, Korea
83 rdf:type schema:Organization
84 Ndd21d7427ba14809bc08ea8ceca24162 schema:name Korea Construction Equipment Technology Institute, 54004, Gunsan, Korea
85 rdf:type schema:Organization
86 Ne16cc535bda146b2a002f1647b31fa23 rdf:first Nccf0da9356974a1cbaf89ba71b708de7
87 rdf:rest N47baa0e7b1a942f6b1cdea66626619e9
88 Nffb28b42fbb04de2aa029c4728442c0f schema:issueNumber 11
89 rdf:type schema:PublicationIssue
90 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
91 schema:name Information and Computing Sciences
92 rdf:type schema:DefinedTerm
93 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
94 schema:name Artificial Intelligence and Image Processing
95 rdf:type schema:DefinedTerm
96 sg:journal.1295111 schema:issn 1011-8861
97 1226-4865
98 schema:name Journal of Mechanical Science and Technology
99 rdf:type schema:Periodical
100 sg:person.01305741017.76 schema:affiliation https://www.grid.ac/institutes/grid.258676.8
101 schema:familyName Jung
102 schema:givenName Hoeryong
103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01305741017.76
104 rdf:type schema:Person
105 sg:person.015646771156.50 schema:affiliation https://www.grid.ac/institutes/grid.410881.4
106 schema:familyName Shin
107 schema:givenName Changjoo
108 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015646771156.50
109 rdf:type schema:Person
110 sg:pub.10.1007/978-1-4419-8772-3_98 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018303819
111 https://doi.org/10.1007/978-1-4419-8772-3_98
112 rdf:type schema:CreativeWork
113 sg:pub.10.1007/978-1-4615-2958-3_98 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004921070
114 https://doi.org/10.1007/978-1-4615-2958-3_98
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1016/j.gecco.2014.11.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033196824
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1016/j.jembe.2015.05.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028967680
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1016/j.oceaneng.2017.03.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084099906
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1016/j.oceaneng.2017.10.046 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092545223
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1109/icsens.2014.6985208 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095577505
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1109/iros.2010.5649213 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094645077
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1109/oceans.2004.1405509 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095786244
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1109/oceanse.2007.4302315 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094455509
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1109/tip.2006.888337 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061641646
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1109/tip.2014.2358882 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061644111
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1121/1.2935303 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062318590
137 rdf:type schema:CreativeWork
138 https://doi.org/10.3354/meps104257 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071171166
139 rdf:type schema:CreativeWork
140 https://www.grid.ac/institutes/grid.258676.8 schema:alternateName Konkuk University
141 schema:name Department of Mechanical Engineering, Konkuk University, 05029, Seoul, Korea
142 rdf:type schema:Organization
143 https://www.grid.ac/institutes/grid.410881.4 schema:alternateName Korea Institute of Ocean Science and Technology
144 schema:name Korea Institute of Ocean Science and Technology, 49111, Busan, Korea
145 rdf:type schema:Organization
146 https://www.grid.ac/institutes/grid.412238.e schema:alternateName Hoseo University
147 schema:name Department of Mechanical Engineering, Hoseo University, 31066, Cheonan, Korea
148 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...