Experimental and numerical analysis for predicting the dehumidification performance of a hollow fiber type membrane using the log mean pressure ... View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-11

AUTHORS

Jeachul Jang, Eun-Chul Kang, Siyoung Jeong, Seong-Ryong Park

ABSTRACT

The membrane-based dehumidification method is economical and environmentally friendly. Furthermore, the hollow fiber type membrane (HFM) has superior dehumidification performance because it has a large contact area. Despite many advantages, the membranebased dehumidification method is still in the research and development stage, its use in the field is limited, and research on technology to integrate systems is insufficient. In this study, the relationships between parameters affecting dehumidification performance in terms of dehumidification rate and dehumidification amount were compared in order to apply the membrane-based dehumidification system in the field. The experimental and simulation values were compared in order to find a correlation with the dehumidification amount (or water fraction). Dehumidification performance increased when dry-bulb temperature, relative humidity, and log mean temperature difference (LMPD) were increased. The results of this study can be used to predict system performance in advance when a membrane-based dehumidification system is applied in the field. More... »

PAGES

5475-5481

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s12206-018-1045-4

DOI

http://dx.doi.org/10.1007/s12206-018-1045-4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1110422104


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0904", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Sogang University", 
          "id": "https://www.grid.ac/institutes/grid.263736.5", 
          "name": [
            "Energy Efficiency and Materials Research Division, Korea Institute of Energy Research (KIER), 34129, Daejeon, Korea", 
            "Department of Mechanical Engineering, Sogang University, 04107, Seoul, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jang", 
        "givenName": "Jeachul", 
        "id": "sg:person.012232511437.12", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012232511437.12"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Korea Institute of Energy Research", 
          "id": "https://www.grid.ac/institutes/grid.418979.a", 
          "name": [
            "Energy Efficiency and Materials Research Division, Korea Institute of Energy Research (KIER), 34129, Daejeon, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kang", 
        "givenName": "Eun-Chul", 
        "id": "sg:person.010335042271.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010335042271.00"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Sogang University", 
          "id": "https://www.grid.ac/institutes/grid.263736.5", 
          "name": [
            "Department of Mechanical Engineering, Sogang University, 04107, Seoul, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jeong", 
        "givenName": "Siyoung", 
        "id": "sg:person.014761310165.66", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014761310165.66"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Korea Institute of Energy Research", 
          "id": "https://www.grid.ac/institutes/grid.418979.a", 
          "name": [
            "Energy Efficiency and Materials Research Division, Korea Institute of Energy Research (KIER), 34129, Daejeon, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Park", 
        "givenName": "Seong-Ryong", 
        "id": "sg:person.07775261031.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07775261031.48"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.seppur.2015.02.019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002819920"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.enconman.2009.11.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008114022"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.rser.2015.02.038", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008852596"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/andp.18551700105", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012206484"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/en81011139", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021058171"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/ijlct/ctv032", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039800372"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.rser.2015.04.095", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042659707"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijhydene.2014.07.037", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043719556"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.2792323", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057867489"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.7763/ijesd.2015.v6.571", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1074034411"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.buildenv.2017.02.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083916167"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.memsci.2017.05.047", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085406986"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.memsci.2017.05.067", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085608602"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.memsci.2017.07.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090604139"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.rser.2017.10.021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092462157"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.rser.2017.10.067", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092638078"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.rser.2017.10.067", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092638078"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.rser.2017.10.067", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092638078"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.rser.2017.10.067", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092638078"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-11", 
    "datePublishedReg": "2018-11-01", 
    "description": "The membrane-based dehumidification method is economical and environmentally friendly. Furthermore, the hollow fiber type membrane (HFM) has superior dehumidification performance because it has a large contact area. Despite many advantages, the membranebased dehumidification method is still in the research and development stage, its use in the field is limited, and research on technology to integrate systems is insufficient. In this study, the relationships between parameters affecting dehumidification performance in terms of dehumidification rate and dehumidification amount were compared in order to apply the membrane-based dehumidification system in the field. The experimental and simulation values were compared in order to find a correlation with the dehumidification amount (or water fraction). Dehumidification performance increased when dry-bulb temperature, relative humidity, and log mean temperature difference (LMPD) were increased. The results of this study can be used to predict system performance in advance when a membrane-based dehumidification system is applied in the field.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s12206-018-1045-4", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1295111", 
        "issn": [
          "1011-8861", 
          "1226-4865"
        ], 
        "name": "Journal of Mechanical Science and Technology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "11", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "32"
      }
    ], 
    "name": "Experimental and numerical analysis for predicting the dehumidification performance of a hollow fiber type membrane using the log mean pressure difference method", 
    "pagination": "5475-5481", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "0457531a6bfc88e1b2dfbb620a0fdaacd8450b94f82e439f89a6cd6fec2cf16f"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s12206-018-1045-4"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1110422104"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s12206-018-1045-4", 
      "https://app.dimensions.ai/details/publication/pub.1110422104"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T08:20", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000290_0000000290/records_34895_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs12206-018-1045-4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12206-018-1045-4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12206-018-1045-4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12206-018-1045-4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12206-018-1045-4'


 

This table displays all metadata directly associated to this object as RDF triples.

134 TRIPLES      21 PREDICATES      43 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s12206-018-1045-4 schema:about anzsrc-for:09
2 anzsrc-for:0904
3 schema:author Nb46d031c71dc47a0a4b866af9ec21d2c
4 schema:citation https://doi.org/10.1002/andp.18551700105
5 https://doi.org/10.1016/j.buildenv.2017.02.014
6 https://doi.org/10.1016/j.enconman.2009.11.004
7 https://doi.org/10.1016/j.ijhydene.2014.07.037
8 https://doi.org/10.1016/j.memsci.2017.05.047
9 https://doi.org/10.1016/j.memsci.2017.05.067
10 https://doi.org/10.1016/j.memsci.2017.07.009
11 https://doi.org/10.1016/j.rser.2015.02.038
12 https://doi.org/10.1016/j.rser.2015.04.095
13 https://doi.org/10.1016/j.rser.2017.10.021
14 https://doi.org/10.1016/j.rser.2017.10.067
15 https://doi.org/10.1016/j.seppur.2015.02.019
16 https://doi.org/10.1063/1.2792323
17 https://doi.org/10.1093/ijlct/ctv032
18 https://doi.org/10.3390/en81011139
19 https://doi.org/10.7763/ijesd.2015.v6.571
20 schema:datePublished 2018-11
21 schema:datePublishedReg 2018-11-01
22 schema:description The membrane-based dehumidification method is economical and environmentally friendly. Furthermore, the hollow fiber type membrane (HFM) has superior dehumidification performance because it has a large contact area. Despite many advantages, the membranebased dehumidification method is still in the research and development stage, its use in the field is limited, and research on technology to integrate systems is insufficient. In this study, the relationships between parameters affecting dehumidification performance in terms of dehumidification rate and dehumidification amount were compared in order to apply the membrane-based dehumidification system in the field. The experimental and simulation values were compared in order to find a correlation with the dehumidification amount (or water fraction). Dehumidification performance increased when dry-bulb temperature, relative humidity, and log mean temperature difference (LMPD) were increased. The results of this study can be used to predict system performance in advance when a membrane-based dehumidification system is applied in the field.
23 schema:genre research_article
24 schema:inLanguage en
25 schema:isAccessibleForFree false
26 schema:isPartOf N5cad1af1df1f420da98555f0050b61d7
27 Naecc20e3435b48e389543a840fd80f36
28 sg:journal.1295111
29 schema:name Experimental and numerical analysis for predicting the dehumidification performance of a hollow fiber type membrane using the log mean pressure difference method
30 schema:pagination 5475-5481
31 schema:productId N25b9bfb9f4dc4a86a3ff81cd1dcfe59a
32 N6e2583ce1cb84c5e96d86a85a7bb9abb
33 Na372fb430c41410a879bde69e952e23b
34 schema:sameAs https://app.dimensions.ai/details/publication/pub.1110422104
35 https://doi.org/10.1007/s12206-018-1045-4
36 schema:sdDatePublished 2019-04-11T08:20
37 schema:sdLicense https://scigraph.springernature.com/explorer/license/
38 schema:sdPublisher N787d83f1abbf40e790819ce261c7af9c
39 schema:url https://link.springer.com/10.1007%2Fs12206-018-1045-4
40 sgo:license sg:explorer/license/
41 sgo:sdDataset articles
42 rdf:type schema:ScholarlyArticle
43 N1e09122c6f01426194686ea0c8f6dcca rdf:first sg:person.07775261031.48
44 rdf:rest rdf:nil
45 N25b9bfb9f4dc4a86a3ff81cd1dcfe59a schema:name readcube_id
46 schema:value 0457531a6bfc88e1b2dfbb620a0fdaacd8450b94f82e439f89a6cd6fec2cf16f
47 rdf:type schema:PropertyValue
48 N54e93da072054a708ea60165f9fef0f2 rdf:first sg:person.014761310165.66
49 rdf:rest N1e09122c6f01426194686ea0c8f6dcca
50 N5cad1af1df1f420da98555f0050b61d7 schema:issueNumber 11
51 rdf:type schema:PublicationIssue
52 N6e2583ce1cb84c5e96d86a85a7bb9abb schema:name doi
53 schema:value 10.1007/s12206-018-1045-4
54 rdf:type schema:PropertyValue
55 N787d83f1abbf40e790819ce261c7af9c schema:name Springer Nature - SN SciGraph project
56 rdf:type schema:Organization
57 Na372fb430c41410a879bde69e952e23b schema:name dimensions_id
58 schema:value pub.1110422104
59 rdf:type schema:PropertyValue
60 Naecc20e3435b48e389543a840fd80f36 schema:volumeNumber 32
61 rdf:type schema:PublicationVolume
62 Nb46d031c71dc47a0a4b866af9ec21d2c rdf:first sg:person.012232511437.12
63 rdf:rest Nc8654b739580482b9b0583bff46d151a
64 Nc8654b739580482b9b0583bff46d151a rdf:first sg:person.010335042271.00
65 rdf:rest N54e93da072054a708ea60165f9fef0f2
66 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
67 schema:name Engineering
68 rdf:type schema:DefinedTerm
69 anzsrc-for:0904 schema:inDefinedTermSet anzsrc-for:
70 schema:name Chemical Engineering
71 rdf:type schema:DefinedTerm
72 sg:journal.1295111 schema:issn 1011-8861
73 1226-4865
74 schema:name Journal of Mechanical Science and Technology
75 rdf:type schema:Periodical
76 sg:person.010335042271.00 schema:affiliation https://www.grid.ac/institutes/grid.418979.a
77 schema:familyName Kang
78 schema:givenName Eun-Chul
79 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010335042271.00
80 rdf:type schema:Person
81 sg:person.012232511437.12 schema:affiliation https://www.grid.ac/institutes/grid.263736.5
82 schema:familyName Jang
83 schema:givenName Jeachul
84 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012232511437.12
85 rdf:type schema:Person
86 sg:person.014761310165.66 schema:affiliation https://www.grid.ac/institutes/grid.263736.5
87 schema:familyName Jeong
88 schema:givenName Siyoung
89 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014761310165.66
90 rdf:type schema:Person
91 sg:person.07775261031.48 schema:affiliation https://www.grid.ac/institutes/grid.418979.a
92 schema:familyName Park
93 schema:givenName Seong-Ryong
94 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07775261031.48
95 rdf:type schema:Person
96 https://doi.org/10.1002/andp.18551700105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012206484
97 rdf:type schema:CreativeWork
98 https://doi.org/10.1016/j.buildenv.2017.02.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083916167
99 rdf:type schema:CreativeWork
100 https://doi.org/10.1016/j.enconman.2009.11.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008114022
101 rdf:type schema:CreativeWork
102 https://doi.org/10.1016/j.ijhydene.2014.07.037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043719556
103 rdf:type schema:CreativeWork
104 https://doi.org/10.1016/j.memsci.2017.05.047 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085406986
105 rdf:type schema:CreativeWork
106 https://doi.org/10.1016/j.memsci.2017.05.067 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085608602
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1016/j.memsci.2017.07.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090604139
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1016/j.rser.2015.02.038 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008852596
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1016/j.rser.2015.04.095 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042659707
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1016/j.rser.2017.10.021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092462157
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1016/j.rser.2017.10.067 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092638078
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1016/j.seppur.2015.02.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002819920
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1063/1.2792323 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057867489
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1093/ijlct/ctv032 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039800372
123 rdf:type schema:CreativeWork
124 https://doi.org/10.3390/en81011139 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021058171
125 rdf:type schema:CreativeWork
126 https://doi.org/10.7763/ijesd.2015.v6.571 schema:sameAs https://app.dimensions.ai/details/publication/pub.1074034411
127 rdf:type schema:CreativeWork
128 https://www.grid.ac/institutes/grid.263736.5 schema:alternateName Sogang University
129 schema:name Department of Mechanical Engineering, Sogang University, 04107, Seoul, Korea
130 Energy Efficiency and Materials Research Division, Korea Institute of Energy Research (KIER), 34129, Daejeon, Korea
131 rdf:type schema:Organization
132 https://www.grid.ac/institutes/grid.418979.a schema:alternateName Korea Institute of Energy Research
133 schema:name Energy Efficiency and Materials Research Division, Korea Institute of Energy Research (KIER), 34129, Daejeon, Korea
134 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...