A neural network based approach for background noise reduction in airborne acoustic emission of a machining process View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2017-07

AUTHORS

T. Zafar, K. Kamal, Z. Sheikh, S. Mathavan, U. Ali, H. Hashmi

ABSTRACT

Tool wear prediction has become an indispensable technique to prevent downtime in manufacturing and production processes. Airborne emission from a machining process using a low-cost microphone may provide a vital signal of tool health. However, the effect of background noise results in anomaly in data that may lead to wrong prediction of tool health. The paper presents an adaptive approach using neural networks for background noise filtration in acoustic signal for a turning process. Acoustic signal of a turning process is mixed with background noise from four different machines and introduced at different RPMs and feed-rate at a constant depth of cut. A comparison of Backpropagation neural network (BPNN), Self-organizing map and k-means clustering algorithm for noise filtration is investigated in this paper. In this regard, back-propagation neural network showed better performance with an average accuracy for all the four sources. It shows 100 % accuracy for grinding machine signal, 94.78 % accuracy for background signal from 3-axis milling machine, 45.57 % and 12.69 % for motor and 4-axis milling machine, respectively. Signal reconstruction is then done using Discrete cosine transform (DCT). The proposed technique shows a promising future for noise filtration in airborne acoustic data of a machining process. More... »

PAGES

3171-3182

References to SciGraph publications

  • <error retrieving object. in <ERROR RETRIEVING OBJECT
  • 2014-01-23. A machine learning approach for the condition monitoring of rotating machinery in JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s12206-017-0606-2

    DOI

    http://dx.doi.org/10.1007/s12206-017-0606-2

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1090929665


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Applied Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0913", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mechanical Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "National University of Sciences and Technology, Islamabad, Pakistan", 
              "id": "http://www.grid.ac/institutes/grid.412117.0", 
              "name": [
                "National University of Sciences and Technology, Islamabad, Pakistan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zafar", 
            "givenName": "T.", 
            "id": "sg:person.016552265701.97", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016552265701.97"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "National University of Sciences and Technology, Islamabad, Pakistan", 
              "id": "http://www.grid.ac/institutes/grid.412117.0", 
              "name": [
                "National University of Sciences and Technology, Islamabad, Pakistan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kamal", 
            "givenName": "K.", 
            "id": "sg:person.013472504371.71", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013472504371.71"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "PAEC, Islamabad, Pakistan", 
              "id": "http://www.grid.ac/institutes/grid.483915.2", 
              "name": [
                "PAEC, Islamabad, Pakistan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Sheikh", 
            "givenName": "Z.", 
            "id": "sg:person.015645532443.04", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015645532443.04"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Nottingham Trent University, Burton Street, NG1 4BU, Nottingham, UK", 
              "id": "http://www.grid.ac/institutes/grid.12361.37", 
              "name": [
                "Nottingham Trent University, Burton Street, NG1 4BU, Nottingham, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Mathavan", 
            "givenName": "S.", 
            "id": "sg:person.011305605054.11", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011305605054.11"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "National University of Sciences and Technology, Islamabad, Pakistan", 
              "id": "http://www.grid.ac/institutes/grid.412117.0", 
              "name": [
                "National University of Sciences and Technology, Islamabad, Pakistan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ali", 
            "givenName": "U.", 
            "id": "sg:person.010352462713.74", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010352462713.74"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "National University of Sciences and Technology, Islamabad, Pakistan", 
              "id": "http://www.grid.ac/institutes/grid.412117.0", 
              "name": [
                "National University of Sciences and Technology, Islamabad, Pakistan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hashmi", 
            "givenName": "H.", 
            "id": "sg:person.011745423713.41", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011745423713.41"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s12206-013-1102-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035011878", 
              "https://doi.org/10.1007/s12206-013-1102-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1472-6750-7-53", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039136256", 
              "https://doi.org/10.1186/1472-6750-7-53"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2017-07", 
        "datePublishedReg": "2017-07-01", 
        "description": "Tool wear prediction has become an indispensable technique to prevent downtime in manufacturing and production processes. Airborne emission from a machining process using a low-cost microphone may provide a vital signal of tool health. However, the effect of background noise results in anomaly in data that may lead to wrong prediction of tool health. The paper presents an adaptive approach using neural networks for background noise filtration in acoustic signal for a turning process. Acoustic signal of a turning process is mixed with background noise from four different machines and introduced at different RPMs and feed-rate at a constant depth of cut. A comparison of Backpropagation neural network (BPNN), Self-organizing map and k-means clustering algorithm for noise filtration is investigated in this paper. In this regard, back-propagation neural network showed better performance with an average accuracy for all the four sources. It shows 100 % accuracy for grinding machine signal, 94.78 % accuracy for background signal from 3-axis milling machine, 45.57 % and 12.69 % for motor and 4-axis milling machine, respectively. Signal reconstruction is then done using Discrete cosine transform (DCT). The proposed technique shows a promising future for noise filtration in airborne acoustic data of a machining process.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s12206-017-0606-2", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1295111", 
            "issn": [
              "1011-8861", 
              "1226-4865"
            ], 
            "name": "Journal of Mechanical Science and Technology", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "7", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "31"
          }
        ], 
        "keywords": [
          "machining process", 
          "turning process", 
          "tool health", 
          "noise filtration", 
          "airborne acoustic emission", 
          "low-cost microphones", 
          "acoustic signals", 
          "discrete cosine transform", 
          "acoustic emission", 
          "different rpm", 
          "machine signals", 
          "backpropagation neural network", 
          "background noise reduction", 
          "noise reduction", 
          "signal reconstruction", 
          "airborne emissions", 
          "constant depth", 
          "back propagation neural network", 
          "noise results", 
          "production process", 
          "vital signals", 
          "neural network", 
          "acoustic data", 
          "better performance", 
          "cosine transform", 
          "promising future", 
          "background noise", 
          "machine", 
          "signals", 
          "adaptive approach", 
          "emission", 
          "rpm", 
          "filtration", 
          "accuracy", 
          "manufacturing", 
          "indispensable technique", 
          "process", 
          "downtime", 
          "background signal", 
          "microphone", 
          "motor", 
          "prediction", 
          "technique", 
          "transform", 
          "average accuracy", 
          "noise", 
          "performance", 
          "network", 
          "different machine", 
          "depth", 
          "self-organizing map", 
          "wrong predictions", 
          "approach", 
          "algorithm", 
          "reduction", 
          "cut", 
          "source", 
          "results", 
          "comparison", 
          "maps", 
          "effect", 
          "k-means", 
          "reconstruction", 
          "data", 
          "tool", 
          "future", 
          "regard", 
          "anomalies", 
          "health", 
          "paper"
        ], 
        "name": "A neural network based approach for background noise reduction in airborne acoustic emission of a machining process", 
        "pagination": "3171-3182", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1090929665"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s12206-017-0606-2"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s12206-017-0606-2", 
          "https://app.dimensions.ai/details/publication/pub.1090929665"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-08-04T17:06", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220804/entities/gbq_results/article/article_744.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s12206-017-0606-2"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12206-017-0606-2'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12206-017-0606-2'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12206-017-0606-2'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12206-017-0606-2'


     

    This table displays all metadata directly associated to this object as RDF triples.

    184 TRIPLES      21 PREDICATES      99 URIs      87 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s12206-017-0606-2 schema:about anzsrc-for:01
    2 anzsrc-for:0102
    3 anzsrc-for:09
    4 anzsrc-for:0913
    5 schema:author N54d1d62dc2e640fc8e25a74a18828ea7
    6 schema:citation sg:pub.10.1007/s12206-013-1102-y
    7 sg:pub.10.1186/1472-6750-7-53
    8 schema:datePublished 2017-07
    9 schema:datePublishedReg 2017-07-01
    10 schema:description Tool wear prediction has become an indispensable technique to prevent downtime in manufacturing and production processes. Airborne emission from a machining process using a low-cost microphone may provide a vital signal of tool health. However, the effect of background noise results in anomaly in data that may lead to wrong prediction of tool health. The paper presents an adaptive approach using neural networks for background noise filtration in acoustic signal for a turning process. Acoustic signal of a turning process is mixed with background noise from four different machines and introduced at different RPMs and feed-rate at a constant depth of cut. A comparison of Backpropagation neural network (BPNN), Self-organizing map and k-means clustering algorithm for noise filtration is investigated in this paper. In this regard, back-propagation neural network showed better performance with an average accuracy for all the four sources. It shows 100 % accuracy for grinding machine signal, 94.78 % accuracy for background signal from 3-axis milling machine, 45.57 % and 12.69 % for motor and 4-axis milling machine, respectively. Signal reconstruction is then done using Discrete cosine transform (DCT). The proposed technique shows a promising future for noise filtration in airborne acoustic data of a machining process.
    11 schema:genre article
    12 schema:isAccessibleForFree false
    13 schema:isPartOf N5c8262b700454fa99eb34c81c1f12d2f
    14 N83b822d05638482b8d1f26bea42dca22
    15 sg:journal.1295111
    16 schema:keywords accuracy
    17 acoustic data
    18 acoustic emission
    19 acoustic signals
    20 adaptive approach
    21 airborne acoustic emission
    22 airborne emissions
    23 algorithm
    24 anomalies
    25 approach
    26 average accuracy
    27 back propagation neural network
    28 background noise
    29 background noise reduction
    30 background signal
    31 backpropagation neural network
    32 better performance
    33 comparison
    34 constant depth
    35 cosine transform
    36 cut
    37 data
    38 depth
    39 different machine
    40 different rpm
    41 discrete cosine transform
    42 downtime
    43 effect
    44 emission
    45 filtration
    46 future
    47 health
    48 indispensable technique
    49 k-means
    50 low-cost microphones
    51 machine
    52 machine signals
    53 machining process
    54 manufacturing
    55 maps
    56 microphone
    57 motor
    58 network
    59 neural network
    60 noise
    61 noise filtration
    62 noise reduction
    63 noise results
    64 paper
    65 performance
    66 prediction
    67 process
    68 production process
    69 promising future
    70 reconstruction
    71 reduction
    72 regard
    73 results
    74 rpm
    75 self-organizing map
    76 signal reconstruction
    77 signals
    78 source
    79 technique
    80 tool
    81 tool health
    82 transform
    83 turning process
    84 vital signals
    85 wrong predictions
    86 schema:name A neural network based approach for background noise reduction in airborne acoustic emission of a machining process
    87 schema:pagination 3171-3182
    88 schema:productId N50e5ef035f9b493e9019ab95aacc3950
    89 N7d89d4ff5ba34744816e502707b532e2
    90 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090929665
    91 https://doi.org/10.1007/s12206-017-0606-2
    92 schema:sdDatePublished 2022-08-04T17:06
    93 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    94 schema:sdPublisher Nf3661e33fcc44143855256b9a9199e34
    95 schema:url https://doi.org/10.1007/s12206-017-0606-2
    96 sgo:license sg:explorer/license/
    97 sgo:sdDataset articles
    98 rdf:type schema:ScholarlyArticle
    99 N169fa2c1c71a4adb8924ebe5df1d9856 rdf:first sg:person.010352462713.74
    100 rdf:rest N649dd3ce347f40d180b982fb9bfb2f4d
    101 N1ea79cb59bcc42dea19e79f1b9feeaae rdf:first sg:person.015645532443.04
    102 rdf:rest Nf6156c5f8fbc43068ee9975cf0e8150f
    103 N23adf92efec34e6ca6a13d9f3b1abd07 rdf:first sg:person.013472504371.71
    104 rdf:rest N1ea79cb59bcc42dea19e79f1b9feeaae
    105 N50e5ef035f9b493e9019ab95aacc3950 schema:name doi
    106 schema:value 10.1007/s12206-017-0606-2
    107 rdf:type schema:PropertyValue
    108 N54d1d62dc2e640fc8e25a74a18828ea7 rdf:first sg:person.016552265701.97
    109 rdf:rest N23adf92efec34e6ca6a13d9f3b1abd07
    110 N5c8262b700454fa99eb34c81c1f12d2f schema:volumeNumber 31
    111 rdf:type schema:PublicationVolume
    112 N649dd3ce347f40d180b982fb9bfb2f4d rdf:first sg:person.011745423713.41
    113 rdf:rest rdf:nil
    114 N7d89d4ff5ba34744816e502707b532e2 schema:name dimensions_id
    115 schema:value pub.1090929665
    116 rdf:type schema:PropertyValue
    117 N83b822d05638482b8d1f26bea42dca22 schema:issueNumber 7
    118 rdf:type schema:PublicationIssue
    119 Nf3661e33fcc44143855256b9a9199e34 schema:name Springer Nature - SN SciGraph project
    120 rdf:type schema:Organization
    121 Nf6156c5f8fbc43068ee9975cf0e8150f rdf:first sg:person.011305605054.11
    122 rdf:rest N169fa2c1c71a4adb8924ebe5df1d9856
    123 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    124 schema:name Mathematical Sciences
    125 rdf:type schema:DefinedTerm
    126 anzsrc-for:0102 schema:inDefinedTermSet anzsrc-for:
    127 schema:name Applied Mathematics
    128 rdf:type schema:DefinedTerm
    129 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    130 schema:name Engineering
    131 rdf:type schema:DefinedTerm
    132 anzsrc-for:0913 schema:inDefinedTermSet anzsrc-for:
    133 schema:name Mechanical Engineering
    134 rdf:type schema:DefinedTerm
    135 sg:journal.1295111 schema:issn 1011-8861
    136 1226-4865
    137 schema:name Journal of Mechanical Science and Technology
    138 schema:publisher Springer Nature
    139 rdf:type schema:Periodical
    140 sg:person.010352462713.74 schema:affiliation grid-institutes:grid.412117.0
    141 schema:familyName Ali
    142 schema:givenName U.
    143 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010352462713.74
    144 rdf:type schema:Person
    145 sg:person.011305605054.11 schema:affiliation grid-institutes:grid.12361.37
    146 schema:familyName Mathavan
    147 schema:givenName S.
    148 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011305605054.11
    149 rdf:type schema:Person
    150 sg:person.011745423713.41 schema:affiliation grid-institutes:grid.412117.0
    151 schema:familyName Hashmi
    152 schema:givenName H.
    153 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011745423713.41
    154 rdf:type schema:Person
    155 sg:person.013472504371.71 schema:affiliation grid-institutes:grid.412117.0
    156 schema:familyName Kamal
    157 schema:givenName K.
    158 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013472504371.71
    159 rdf:type schema:Person
    160 sg:person.015645532443.04 schema:affiliation grid-institutes:grid.483915.2
    161 schema:familyName Sheikh
    162 schema:givenName Z.
    163 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015645532443.04
    164 rdf:type schema:Person
    165 sg:person.016552265701.97 schema:affiliation grid-institutes:grid.412117.0
    166 schema:familyName Zafar
    167 schema:givenName T.
    168 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016552265701.97
    169 rdf:type schema:Person
    170 sg:pub.10.1007/s12206-013-1102-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1035011878
    171 https://doi.org/10.1007/s12206-013-1102-y
    172 rdf:type schema:CreativeWork
    173 sg:pub.10.1186/1472-6750-7-53 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039136256
    174 https://doi.org/10.1186/1472-6750-7-53
    175 rdf:type schema:CreativeWork
    176 grid-institutes:grid.12361.37 schema:alternateName Nottingham Trent University, Burton Street, NG1 4BU, Nottingham, UK
    177 schema:name Nottingham Trent University, Burton Street, NG1 4BU, Nottingham, UK
    178 rdf:type schema:Organization
    179 grid-institutes:grid.412117.0 schema:alternateName National University of Sciences and Technology, Islamabad, Pakistan
    180 schema:name National University of Sciences and Technology, Islamabad, Pakistan
    181 rdf:type schema:Organization
    182 grid-institutes:grid.483915.2 schema:alternateName PAEC, Islamabad, Pakistan
    183 schema:name PAEC, Islamabad, Pakistan
    184 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...