Numerical study of laminar-forced convection of Al2O3-water nanofluids between two parallel plates View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2017-02

AUTHORS

M. Hemmat Esfe, A. A. Abbasian Arani, T. Azizi, S. H. Mousavi, S. Wongwises

ABSTRACT

Laminar-forced convection of Al2O3-water nanofluid between two parallel plates was studied numerically. The channel walls were assumed to be isothermal. The effective viscosity and thermal conductivity of nanofluid were considered as variables, and the effects of applying a variable properties model were investigatedby using two relatively new models. The numerical results were compared to the results obtained from a previous non-variable properties model. Also, the effects of nanoparticle size on the flow and heat transfer within the channel were investigated. The study was carried out using Reynolds numbers between 100-1000, nanoparticle diameters in the 15-75 nm range, and nanoparticle volume fractions in the range 0.01-0.05 nm. The numerical results show that using nanofluid could enhance heat transfer by up to 35 %, compared to the base fluid. In addition, reducing the nanoparticle diameter can enhance heat transfer by up to 15.9 %. More... »

PAGES

785-796

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s12206-017-0130-4

DOI

http://dx.doi.org/10.1007/s12206-017-0130-4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1083891194


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0915", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Interdisciplinary Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Islamic Azad University of Najafabad", 
          "id": "https://www.grid.ac/institutes/grid.468905.6", 
          "name": [
            "Department of Mechanical Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Esfe", 
        "givenName": "M. Hemmat", 
        "id": "sg:person.015143716677.04", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015143716677.04"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Kashan", 
          "id": "https://www.grid.ac/institutes/grid.412057.5", 
          "name": [
            "Department of Mechanical Engineering, University of Kashan, Kashan, Iran"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Arani", 
        "givenName": "A. A. Abbasian", 
        "id": "sg:person.011526553271.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011526553271.49"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Kashan", 
          "id": "https://www.grid.ac/institutes/grid.412057.5", 
          "name": [
            "Department of Mechanical Engineering, University of Kashan, Kashan, Iran"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Azizi", 
        "givenName": "T.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Kashan", 
          "id": "https://www.grid.ac/institutes/grid.412057.5", 
          "name": [
            "Department of Mechanical Engineering, University of Kashan, Kashan, Iran"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mousavi", 
        "givenName": "S. H.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "King Mongkut's University of Technology Thonburi", 
          "id": "https://www.grid.ac/institutes/grid.412151.2", 
          "name": [
            "Fluid Mechanics, Thermal Engineering and Multiphase Flow Research Lab. (FUTURE), Department of Mechanical Engineering, Faculty of Engineering, King Mongkut\u2019s University of Technology Thonburi, Bangmod, Bangkok, Thailand"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wongwises", 
        "givenName": "S.", 
        "id": "sg:person.012267021412.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012267021412.00"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.compfluid.2012.04.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000052625"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.expthermflusci.2012.04.017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000829347"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.expthermflusci.2012.08.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001631320"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijheatmasstransfer.2011.04.048", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011123003"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1556-276x-6-247", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014567374", 
          "https://doi.org/10.1186/1556-276x-6-247"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijheatmasstransfer.2008.03.033", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015832003"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.compfluid.2007.07.024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018422164"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.applthermaleng.2010.05.036", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022604522"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cite.330311204", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030320154"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.rser.2005.06.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030987150"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.rser.2005.06.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030987150"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.icheatmasstransfer.2014.08.037", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034362472"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.rser.2005.01.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038463921"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijheatmasstransfer.2014.01.069", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039302729"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijthermalsci.2008.03.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039602480"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11051-008-9500-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039720130", 
          "https://doi.org/10.1007/s11051-008-9500-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.icheatmasstransfer.2014.08.035", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041154919"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.enconman.2010.06.072", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042522989"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10404-004-0027-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043000144", 
          "https://doi.org/10.1007/s10404-004-0027-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10404-004-0027-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043000144", 
          "https://doi.org/10.1007/s10404-004-0027-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijheatfluidflow.2009.02.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043614908"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijheatfluidflow.2007.11.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044562180"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10973-014-4197-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046846597", 
          "https://doi.org/10.1007/s10973-014-4197-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijthermalsci.2010.03.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048512911"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijheatfluidflow.2005.02.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049028081"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijheatfluidflow.2005.02.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049028081"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijheatmasstransfer.2007.11.063", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051152128"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1700493", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057770936"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1115/1.1571080", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062072311"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-02", 
    "datePublishedReg": "2017-02-01", 
    "description": "Laminar-forced convection of Al2O3-water nanofluid between two parallel plates was studied numerically. The channel walls were assumed to be isothermal. The effective viscosity and thermal conductivity of nanofluid were considered as variables, and the effects of applying a variable properties model were investigatedby using two relatively new models. The numerical results were compared to the results obtained from a previous non-variable properties model. Also, the effects of nanoparticle size on the flow and heat transfer within the channel were investigated. The study was carried out using Reynolds numbers between 100-1000, nanoparticle diameters in the 15-75 nm range, and nanoparticle volume fractions in the range 0.01-0.05 nm. The numerical results show that using nanofluid could enhance heat transfer by up to 35 %, compared to the base fluid. In addition, reducing the nanoparticle diameter can enhance heat transfer by up to 15.9 %.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s12206-017-0130-4", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1295111", 
        "issn": [
          "1011-8861", 
          "1226-4865"
        ], 
        "name": "Journal of Mechanical Science and Technology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "31"
      }
    ], 
    "name": "Numerical study of laminar-forced convection of Al2O3-water nanofluids between two parallel plates", 
    "pagination": "785-796", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "7a60e22a22587f8b94331dbef3c02f44fb7823bc3356c7860e1d1756d7e37726"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s12206-017-0130-4"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1083891194"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s12206-017-0130-4", 
      "https://app.dimensions.ai/details/publication/pub.1083891194"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T09:59", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000347_0000000347/records_89814_00000002.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs12206-017-0130-4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12206-017-0130-4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12206-017-0130-4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12206-017-0130-4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12206-017-0130-4'


 

This table displays all metadata directly associated to this object as RDF triples.

175 TRIPLES      21 PREDICATES      53 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s12206-017-0130-4 schema:about anzsrc-for:09
2 anzsrc-for:0915
3 schema:author Nfb587561c2014969b9bb91cb9e3ec2d2
4 schema:citation sg:pub.10.1007/s10404-004-0027-2
5 sg:pub.10.1007/s10973-014-4197-1
6 sg:pub.10.1007/s11051-008-9500-2
7 sg:pub.10.1186/1556-276x-6-247
8 https://doi.org/10.1002/cite.330311204
9 https://doi.org/10.1016/j.applthermaleng.2010.05.036
10 https://doi.org/10.1016/j.compfluid.2007.07.024
11 https://doi.org/10.1016/j.compfluid.2012.04.011
12 https://doi.org/10.1016/j.enconman.2010.06.072
13 https://doi.org/10.1016/j.expthermflusci.2012.04.017
14 https://doi.org/10.1016/j.expthermflusci.2012.08.014
15 https://doi.org/10.1016/j.icheatmasstransfer.2014.08.035
16 https://doi.org/10.1016/j.icheatmasstransfer.2014.08.037
17 https://doi.org/10.1016/j.ijheatfluidflow.2005.02.004
18 https://doi.org/10.1016/j.ijheatfluidflow.2007.11.007
19 https://doi.org/10.1016/j.ijheatfluidflow.2009.02.003
20 https://doi.org/10.1016/j.ijheatmasstransfer.2007.11.063
21 https://doi.org/10.1016/j.ijheatmasstransfer.2008.03.033
22 https://doi.org/10.1016/j.ijheatmasstransfer.2011.04.048
23 https://doi.org/10.1016/j.ijheatmasstransfer.2014.01.069
24 https://doi.org/10.1016/j.ijthermalsci.2008.03.009
25 https://doi.org/10.1016/j.ijthermalsci.2010.03.016
26 https://doi.org/10.1016/j.rser.2005.01.010
27 https://doi.org/10.1016/j.rser.2005.06.005
28 https://doi.org/10.1063/1.1700493
29 https://doi.org/10.1115/1.1571080
30 schema:datePublished 2017-02
31 schema:datePublishedReg 2017-02-01
32 schema:description Laminar-forced convection of Al2O3-water nanofluid between two parallel plates was studied numerically. The channel walls were assumed to be isothermal. The effective viscosity and thermal conductivity of nanofluid were considered as variables, and the effects of applying a variable properties model were investigatedby using two relatively new models. The numerical results were compared to the results obtained from a previous non-variable properties model. Also, the effects of nanoparticle size on the flow and heat transfer within the channel were investigated. The study was carried out using Reynolds numbers between 100-1000, nanoparticle diameters in the 15-75 nm range, and nanoparticle volume fractions in the range 0.01-0.05 nm. The numerical results show that using nanofluid could enhance heat transfer by up to 35 %, compared to the base fluid. In addition, reducing the nanoparticle diameter can enhance heat transfer by up to 15.9 %.
33 schema:genre research_article
34 schema:inLanguage en
35 schema:isAccessibleForFree false
36 schema:isPartOf N30a17910b95042e0a1c146cbb812e90a
37 N57afdef1f16c4fb1b0922446e57d013d
38 sg:journal.1295111
39 schema:name Numerical study of laminar-forced convection of Al2O3-water nanofluids between two parallel plates
40 schema:pagination 785-796
41 schema:productId N060e7f03a4ed47ec8ac59f389aca4ee0
42 N5434df0f047846caa8e770ae5c07284b
43 N7ea4d88d57c046a5a1895d76edf3026f
44 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083891194
45 https://doi.org/10.1007/s12206-017-0130-4
46 schema:sdDatePublished 2019-04-11T09:59
47 schema:sdLicense https://scigraph.springernature.com/explorer/license/
48 schema:sdPublisher N5d09261e433b49a6bb1a0b56123d6551
49 schema:url https://link.springer.com/10.1007%2Fs12206-017-0130-4
50 sgo:license sg:explorer/license/
51 sgo:sdDataset articles
52 rdf:type schema:ScholarlyArticle
53 N0599928322ff49979192886d263895cb rdf:first sg:person.012267021412.00
54 rdf:rest rdf:nil
55 N060e7f03a4ed47ec8ac59f389aca4ee0 schema:name readcube_id
56 schema:value 7a60e22a22587f8b94331dbef3c02f44fb7823bc3356c7860e1d1756d7e37726
57 rdf:type schema:PropertyValue
58 N19662368c5334695b2b625efb11c14fb schema:affiliation https://www.grid.ac/institutes/grid.412057.5
59 schema:familyName Azizi
60 schema:givenName T.
61 rdf:type schema:Person
62 N2d4a9796fad84336a0966ab0a3ac66ce rdf:first sg:person.011526553271.49
63 rdf:rest N6ca61b911bd44bd3bf9dc5416ec0a02d
64 N30a17910b95042e0a1c146cbb812e90a schema:volumeNumber 31
65 rdf:type schema:PublicationVolume
66 N41f1e33bdef7486a9e944f7b8896f010 rdf:first N4a4b57fd94bd4f69bccc0c1c71fc1b05
67 rdf:rest N0599928322ff49979192886d263895cb
68 N4a4b57fd94bd4f69bccc0c1c71fc1b05 schema:affiliation https://www.grid.ac/institutes/grid.412057.5
69 schema:familyName Mousavi
70 schema:givenName S. H.
71 rdf:type schema:Person
72 N5434df0f047846caa8e770ae5c07284b schema:name doi
73 schema:value 10.1007/s12206-017-0130-4
74 rdf:type schema:PropertyValue
75 N57afdef1f16c4fb1b0922446e57d013d schema:issueNumber 2
76 rdf:type schema:PublicationIssue
77 N5d09261e433b49a6bb1a0b56123d6551 schema:name Springer Nature - SN SciGraph project
78 rdf:type schema:Organization
79 N6ca61b911bd44bd3bf9dc5416ec0a02d rdf:first N19662368c5334695b2b625efb11c14fb
80 rdf:rest N41f1e33bdef7486a9e944f7b8896f010
81 N7ea4d88d57c046a5a1895d76edf3026f schema:name dimensions_id
82 schema:value pub.1083891194
83 rdf:type schema:PropertyValue
84 Nfb587561c2014969b9bb91cb9e3ec2d2 rdf:first sg:person.015143716677.04
85 rdf:rest N2d4a9796fad84336a0966ab0a3ac66ce
86 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
87 schema:name Engineering
88 rdf:type schema:DefinedTerm
89 anzsrc-for:0915 schema:inDefinedTermSet anzsrc-for:
90 schema:name Interdisciplinary Engineering
91 rdf:type schema:DefinedTerm
92 sg:journal.1295111 schema:issn 1011-8861
93 1226-4865
94 schema:name Journal of Mechanical Science and Technology
95 rdf:type schema:Periodical
96 sg:person.011526553271.49 schema:affiliation https://www.grid.ac/institutes/grid.412057.5
97 schema:familyName Arani
98 schema:givenName A. A. Abbasian
99 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011526553271.49
100 rdf:type schema:Person
101 sg:person.012267021412.00 schema:affiliation https://www.grid.ac/institutes/grid.412151.2
102 schema:familyName Wongwises
103 schema:givenName S.
104 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012267021412.00
105 rdf:type schema:Person
106 sg:person.015143716677.04 schema:affiliation https://www.grid.ac/institutes/grid.468905.6
107 schema:familyName Esfe
108 schema:givenName M. Hemmat
109 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015143716677.04
110 rdf:type schema:Person
111 sg:pub.10.1007/s10404-004-0027-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043000144
112 https://doi.org/10.1007/s10404-004-0027-2
113 rdf:type schema:CreativeWork
114 sg:pub.10.1007/s10973-014-4197-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046846597
115 https://doi.org/10.1007/s10973-014-4197-1
116 rdf:type schema:CreativeWork
117 sg:pub.10.1007/s11051-008-9500-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039720130
118 https://doi.org/10.1007/s11051-008-9500-2
119 rdf:type schema:CreativeWork
120 sg:pub.10.1186/1556-276x-6-247 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014567374
121 https://doi.org/10.1186/1556-276x-6-247
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1002/cite.330311204 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030320154
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1016/j.applthermaleng.2010.05.036 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022604522
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1016/j.compfluid.2007.07.024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018422164
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1016/j.compfluid.2012.04.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000052625
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1016/j.enconman.2010.06.072 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042522989
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1016/j.expthermflusci.2012.04.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000829347
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1016/j.expthermflusci.2012.08.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001631320
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1016/j.icheatmasstransfer.2014.08.035 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041154919
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1016/j.icheatmasstransfer.2014.08.037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034362472
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1016/j.ijheatfluidflow.2005.02.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049028081
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1016/j.ijheatfluidflow.2007.11.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044562180
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1016/j.ijheatfluidflow.2009.02.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043614908
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1016/j.ijheatmasstransfer.2007.11.063 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051152128
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1016/j.ijheatmasstransfer.2008.03.033 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015832003
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1016/j.ijheatmasstransfer.2011.04.048 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011123003
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1016/j.ijheatmasstransfer.2014.01.069 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039302729
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1016/j.ijthermalsci.2008.03.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039602480
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1016/j.ijthermalsci.2010.03.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048512911
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1016/j.rser.2005.01.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038463921
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1016/j.rser.2005.06.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030987150
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1063/1.1700493 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057770936
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1115/1.1571080 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062072311
166 rdf:type schema:CreativeWork
167 https://www.grid.ac/institutes/grid.412057.5 schema:alternateName University of Kashan
168 schema:name Department of Mechanical Engineering, University of Kashan, Kashan, Iran
169 rdf:type schema:Organization
170 https://www.grid.ac/institutes/grid.412151.2 schema:alternateName King Mongkut's University of Technology Thonburi
171 schema:name Fluid Mechanics, Thermal Engineering and Multiphase Flow Research Lab. (FUTURE), Department of Mechanical Engineering, Faculty of Engineering, King Mongkut’s University of Technology Thonburi, Bangmod, Bangkok, Thailand
172 rdf:type schema:Organization
173 https://www.grid.ac/institutes/grid.468905.6 schema:alternateName Islamic Azad University of Najafabad
174 schema:name Department of Mechanical Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran
175 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...