Ontology type: schema:ScholarlyArticle
2015-11
AUTHORSDeep Kishore Parsediya, Jawar Singh, Pavan Kumar Kankar
ABSTRACTHigh performance and sensitivity of a microcantilever beam is much demanded in biosensing and needs accurate measurement of tip deflection under very low range of analyte adhesion. Constant geometry based rectangular microcantilevers are not good enough for micro or pico level triglyceride (TG) and glucose detection. With the same surface area, length and thickness, the proposed variable width based stepped microcantilever beams exhibit nearly twice or thrice more tip deflection corresponding to the same TG and glucose molecular pressure. With the less pull-in voltage requirement, such proposed stepped microcantilever beam based switches can be utilized in RF reconfigurable antenna for altering its operating frequency and radiation properties. Several configurations of proposed microcantilevers have been studied and analyzed for finding the optimal design with better deflection sensitivity. This paper also encompasses the mathematical modeling of proposed single and double stepped microcantilever beam, which exhibits good agreement with the simulation. More... »
PAGES4823-4832
http://scigraph.springernature.com/pub.10.1007/s12206-015-1029-6
DOIhttp://dx.doi.org/10.1007/s12206-015-1029-6
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1032150482
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Mathematical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Engineering",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Applied Mathematics",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0913",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Mechanical Engineering",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Madhav Institute of Technology and Science, Race Course Road, Gola Ka Mandir, 474005, Gwalior, M.P., India",
"id": "http://www.grid.ac/institutes/grid.430236.0",
"name": [
"Madhav Institute of Technology and Science, Race Course Road, Gola Ka Mandir, 474005, Gwalior, M.P., India"
],
"type": "Organization"
},
"familyName": "Parsediya",
"givenName": "Deep Kishore",
"id": "sg:person.010453214277.53",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010453214277.53"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Department of Electronics and Communication Engineering, PDPM-IIITDM, 482005, Jabalpur, M.P., India",
"id": "http://www.grid.ac/institutes/None",
"name": [
"Department of Electronics and Communication Engineering, PDPM-IIITDM, 482005, Jabalpur, M.P., India"
],
"type": "Organization"
},
"familyName": "Singh",
"givenName": "Jawar",
"id": "sg:person.013345424125.44",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013345424125.44"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Department of Mechanical Engineering, PDPM-IIITDM, 482005, Jabalpur, M.P., India",
"id": "http://www.grid.ac/institutes/None",
"name": [
"Department of Mechanical Engineering, PDPM-IIITDM, 482005, Jabalpur, M.P., India"
],
"type": "Organization"
},
"familyName": "Kankar",
"givenName": "Pavan Kumar",
"id": "sg:person.011621346722.57",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011621346722.57"
],
"type": "Person"
}
],
"datePublished": "2015-11",
"datePublishedReg": "2015-11-01",
"description": "High performance and sensitivity of a microcantilever beam is much demanded in biosensing and needs accurate measurement of tip deflection under very low range of analyte adhesion. Constant geometry based rectangular microcantilevers are not good enough for micro or pico level triglyceride (TG) and glucose detection. With the same surface area, length and thickness, the proposed variable width based stepped microcantilever beams exhibit nearly twice or thrice more tip deflection corresponding to the same TG and glucose molecular pressure. With the less pull-in voltage requirement, such proposed stepped microcantilever beam based switches can be utilized in RF reconfigurable antenna for altering its operating frequency and radiation properties. Several configurations of proposed microcantilevers have been studied and analyzed for finding the optimal design with better deflection sensitivity. This paper also encompasses the mathematical modeling of proposed single and double stepped microcantilever beam, which exhibits good agreement with the simulation.",
"genre": "article",
"id": "sg:pub.10.1007/s12206-015-1029-6",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1295111",
"issn": [
"1011-8861",
"1226-4865"
],
"name": "Journal of Mechanical Science and Technology",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "11",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "29"
}
],
"keywords": [
"microcantilever beam",
"tip deflection",
"rectangular microcantilever",
"MEMS cantilever",
"voltage requirements",
"deflection sensitivity",
"same surface area",
"variable width",
"optimal design",
"high performance",
"surface area",
"microcantilevers",
"glucose detection",
"deflection",
"beam",
"mathematical modeling",
"good agreement",
"effective switching",
"radiation properties",
"constant geometry",
"accurate measurement",
"cantilever",
"width",
"reconfigurable antenna",
"thickness",
"lower range",
"simulations",
"modeling",
"configuration",
"geometry",
"design",
"performance",
"properties",
"switching",
"adhesion",
"biosensing",
"measurements",
"switch",
"pressure",
"antenna",
"agreement",
"requirements",
"range",
"frequency",
"sensitivity",
"length",
"molecular pressure",
"detection",
"area",
"triglycerides",
"paper"
],
"name": "Variable width based stepped MEMS cantilevers for micro or pico level biosensing and effective switching",
"pagination": "4823-4832",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1032150482"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s12206-015-1029-6"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s12206-015-1029-6",
"https://app.dimensions.ai/details/publication/pub.1032150482"
],
"sdDataset": "articles",
"sdDatePublished": "2022-06-01T22:16",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220601/entities/gbq_results/article/article_672.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1007/s12206-015-1029-6"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12206-015-1029-6'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12206-015-1029-6'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12206-015-1029-6'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12206-015-1029-6'
This table displays all metadata directly associated to this object as RDF triples.
136 TRIPLES
21 PREDICATES
79 URIs
69 LITERALS
6 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/s12206-015-1029-6 | schema:about | anzsrc-for:01 |
2 | ″ | ″ | anzsrc-for:0102 |
3 | ″ | ″ | anzsrc-for:09 |
4 | ″ | ″ | anzsrc-for:0913 |
5 | ″ | schema:author | Nec506b90f7e043faa610c33082da293d |
6 | ″ | schema:datePublished | 2015-11 |
7 | ″ | schema:datePublishedReg | 2015-11-01 |
8 | ″ | schema:description | High performance and sensitivity of a microcantilever beam is much demanded in biosensing and needs accurate measurement of tip deflection under very low range of analyte adhesion. Constant geometry based rectangular microcantilevers are not good enough for micro or pico level triglyceride (TG) and glucose detection. With the same surface area, length and thickness, the proposed variable width based stepped microcantilever beams exhibit nearly twice or thrice more tip deflection corresponding to the same TG and glucose molecular pressure. With the less pull-in voltage requirement, such proposed stepped microcantilever beam based switches can be utilized in RF reconfigurable antenna for altering its operating frequency and radiation properties. Several configurations of proposed microcantilevers have been studied and analyzed for finding the optimal design with better deflection sensitivity. This paper also encompasses the mathematical modeling of proposed single and double stepped microcantilever beam, which exhibits good agreement with the simulation. |
9 | ″ | schema:genre | article |
10 | ″ | schema:inLanguage | en |
11 | ″ | schema:isAccessibleForFree | false |
12 | ″ | schema:isPartOf | N059960be7d15450c840539af69896fe9 |
13 | ″ | ″ | N9d4c2c6ff91645ae9c74f947992bd71f |
14 | ″ | ″ | sg:journal.1295111 |
15 | ″ | schema:keywords | MEMS cantilever |
16 | ″ | ″ | accurate measurement |
17 | ″ | ″ | adhesion |
18 | ″ | ″ | agreement |
19 | ″ | ″ | antenna |
20 | ″ | ″ | area |
21 | ″ | ″ | beam |
22 | ″ | ″ | biosensing |
23 | ″ | ″ | cantilever |
24 | ″ | ″ | configuration |
25 | ″ | ″ | constant geometry |
26 | ″ | ″ | deflection |
27 | ″ | ″ | deflection sensitivity |
28 | ″ | ″ | design |
29 | ″ | ″ | detection |
30 | ″ | ″ | effective switching |
31 | ″ | ″ | frequency |
32 | ″ | ″ | geometry |
33 | ″ | ″ | glucose detection |
34 | ″ | ″ | good agreement |
35 | ″ | ″ | high performance |
36 | ″ | ″ | length |
37 | ″ | ″ | lower range |
38 | ″ | ″ | mathematical modeling |
39 | ″ | ″ | measurements |
40 | ″ | ″ | microcantilever beam |
41 | ″ | ″ | microcantilevers |
42 | ″ | ″ | modeling |
43 | ″ | ″ | molecular pressure |
44 | ″ | ″ | optimal design |
45 | ″ | ″ | paper |
46 | ″ | ″ | performance |
47 | ″ | ″ | pressure |
48 | ″ | ″ | properties |
49 | ″ | ″ | radiation properties |
50 | ″ | ″ | range |
51 | ″ | ″ | reconfigurable antenna |
52 | ″ | ″ | rectangular microcantilever |
53 | ″ | ″ | requirements |
54 | ″ | ″ | same surface area |
55 | ″ | ″ | sensitivity |
56 | ″ | ″ | simulations |
57 | ″ | ″ | surface area |
58 | ″ | ″ | switch |
59 | ″ | ″ | switching |
60 | ″ | ″ | thickness |
61 | ″ | ″ | tip deflection |
62 | ″ | ″ | triglycerides |
63 | ″ | ″ | variable width |
64 | ″ | ″ | voltage requirements |
65 | ″ | ″ | width |
66 | ″ | schema:name | Variable width based stepped MEMS cantilevers for micro or pico level biosensing and effective switching |
67 | ″ | schema:pagination | 4823-4832 |
68 | ″ | schema:productId | N7e8308eee49543bb9711322727529c68 |
69 | ″ | ″ | Ndcb376cd1dbd412aa24f8df88a875013 |
70 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1032150482 |
71 | ″ | ″ | https://doi.org/10.1007/s12206-015-1029-6 |
72 | ″ | schema:sdDatePublished | 2022-06-01T22:16 |
73 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
74 | ″ | schema:sdPublisher | Nb7e9e35dcfa64442ac511968d6b0ecab |
75 | ″ | schema:url | https://doi.org/10.1007/s12206-015-1029-6 |
76 | ″ | sgo:license | sg:explorer/license/ |
77 | ″ | sgo:sdDataset | articles |
78 | ″ | rdf:type | schema:ScholarlyArticle |
79 | N059960be7d15450c840539af69896fe9 | schema:issueNumber | 11 |
80 | ″ | rdf:type | schema:PublicationIssue |
81 | N7e8308eee49543bb9711322727529c68 | schema:name | dimensions_id |
82 | ″ | schema:value | pub.1032150482 |
83 | ″ | rdf:type | schema:PropertyValue |
84 | N982802dbbc3e4be59452ac98656681b3 | rdf:first | sg:person.013345424125.44 |
85 | ″ | rdf:rest | Nda01527b3ffd4ecbac04383f50489657 |
86 | N9d4c2c6ff91645ae9c74f947992bd71f | schema:volumeNumber | 29 |
87 | ″ | rdf:type | schema:PublicationVolume |
88 | Nb7e9e35dcfa64442ac511968d6b0ecab | schema:name | Springer Nature - SN SciGraph project |
89 | ″ | rdf:type | schema:Organization |
90 | Nda01527b3ffd4ecbac04383f50489657 | rdf:first | sg:person.011621346722.57 |
91 | ″ | rdf:rest | rdf:nil |
92 | Ndcb376cd1dbd412aa24f8df88a875013 | schema:name | doi |
93 | ″ | schema:value | 10.1007/s12206-015-1029-6 |
94 | ″ | rdf:type | schema:PropertyValue |
95 | Nec506b90f7e043faa610c33082da293d | rdf:first | sg:person.010453214277.53 |
96 | ″ | rdf:rest | N982802dbbc3e4be59452ac98656681b3 |
97 | anzsrc-for:01 | schema:inDefinedTermSet | anzsrc-for: |
98 | ″ | schema:name | Mathematical Sciences |
99 | ″ | rdf:type | schema:DefinedTerm |
100 | anzsrc-for:0102 | schema:inDefinedTermSet | anzsrc-for: |
101 | ″ | schema:name | Applied Mathematics |
102 | ″ | rdf:type | schema:DefinedTerm |
103 | anzsrc-for:09 | schema:inDefinedTermSet | anzsrc-for: |
104 | ″ | schema:name | Engineering |
105 | ″ | rdf:type | schema:DefinedTerm |
106 | anzsrc-for:0913 | schema:inDefinedTermSet | anzsrc-for: |
107 | ″ | schema:name | Mechanical Engineering |
108 | ″ | rdf:type | schema:DefinedTerm |
109 | sg:journal.1295111 | schema:issn | 1011-8861 |
110 | ″ | ″ | 1226-4865 |
111 | ″ | schema:name | Journal of Mechanical Science and Technology |
112 | ″ | schema:publisher | Springer Nature |
113 | ″ | rdf:type | schema:Periodical |
114 | sg:person.010453214277.53 | schema:affiliation | grid-institutes:grid.430236.0 |
115 | ″ | schema:familyName | Parsediya |
116 | ″ | schema:givenName | Deep Kishore |
117 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010453214277.53 |
118 | ″ | rdf:type | schema:Person |
119 | sg:person.011621346722.57 | schema:affiliation | grid-institutes:None |
120 | ″ | schema:familyName | Kankar |
121 | ″ | schema:givenName | Pavan Kumar |
122 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011621346722.57 |
123 | ″ | rdf:type | schema:Person |
124 | sg:person.013345424125.44 | schema:affiliation | grid-institutes:None |
125 | ″ | schema:familyName | Singh |
126 | ″ | schema:givenName | Jawar |
127 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013345424125.44 |
128 | ″ | rdf:type | schema:Person |
129 | grid-institutes:None | schema:alternateName | Department of Electronics and Communication Engineering, PDPM-IIITDM, 482005, Jabalpur, M.P., India |
130 | ″ | ″ | Department of Mechanical Engineering, PDPM-IIITDM, 482005, Jabalpur, M.P., India |
131 | ″ | schema:name | Department of Electronics and Communication Engineering, PDPM-IIITDM, 482005, Jabalpur, M.P., India |
132 | ″ | ″ | Department of Mechanical Engineering, PDPM-IIITDM, 482005, Jabalpur, M.P., India |
133 | ″ | rdf:type | schema:Organization |
134 | grid-institutes:grid.430236.0 | schema:alternateName | Madhav Institute of Technology and Science, Race Course Road, Gola Ka Mandir, 474005, Gwalior, M.P., India |
135 | ″ | schema:name | Madhav Institute of Technology and Science, Race Course Road, Gola Ka Mandir, 474005, Gwalior, M.P., India |
136 | ″ | rdf:type | schema:Organization |