Dynamic analysis during internal transition of a compliant multi-body climbing robot with magnetic adhesion View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2014-12

AUTHORS

Sungmin Nam, Jongkyun Oh, Giuk Lee, Jongwon Kim, TaeWon Seo

ABSTRACT

The control of a robot is optimized to improve its energy efficiency and stability in a geometrically complex environment. For this purpose, analysis is performed on the dynamic modeling of a multi-body robot that can transition its position on corners where horizontal ground and a vertical wall intersect. The robot consists of three bodies that can be attached to the wall by permanent magnetic adhesion and connected by links with two types of compliant joints: a passive type with a torsion spring and an active type with a torque-controlled motor. A dynamics model is derived using the Lagrangian formulation, and investigated in the case of internal corner. Difficulties in the analysis of dynamics for this wall-climbing robot came from how to manage external forces. The external forces acting on the wall-climbing robot result from the wall and the magnets, which change the acting points of the forces. Experiments were conducted to determine the magnetic force with respect to distance. Simulation was then performed to verify the dynamic model. The obtained dynamic model can offer a competent tool for the design and control of the autonomous wall-climbing robot, which can be used for the inspection of heavy-industry buildings, and oil tanks where the geometrically horizontal surface and the vertical wall intersect. More... »

PAGES

5175-5187

References to SciGraph publications

  • 2013-05. Dynamic performance of a cable with an inspection robot — analysis, simulation, and experiments in JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY
  • 2000-01. Concerning a Technique for Increasing Stability of Climbing Robots in JOURNAL OF INTELLIGENT & ROBOTIC SYSTEMS
  • 2010-08. A survey of climbing robots: Locomotion and adhesion in INTERNATIONAL JOURNAL OF PRECISION ENGINEERING AND MANUFACTURING
  • 2008-08. Development of a wall-climbing robot using a tracked wheel mechanism in JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY
  • 2009. Optimum Dynamic Modeling of a Wall Climbing Robot for Ship Rust Removal in INTELLIGENT ROBOTICS AND APPLICATIONS
  • 2006. Machine Vision Guidance System for a Modular Climbing Robot used in Shipbuilding in CLIMBING AND WALKING ROBOTS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s12206-014-1141-z

    DOI

    http://dx.doi.org/10.1007/s12206-014-1141-z

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1013910019


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Artificial Intelligence and Image Processing", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Stanford University", 
              "id": "https://www.grid.ac/institutes/grid.168010.e", 
              "name": [
                "School of Mechanical Engineering, Stanford University, 94305, Stanford, CA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Nam", 
            "givenName": "Sungmin", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Seoul National University", 
              "id": "https://www.grid.ac/institutes/grid.31501.36", 
              "name": [
                "School of Mechanical and Aerospace Engineering, Seoul National University, 151-019, Seoul, Korea"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Oh", 
            "givenName": "Jongkyun", 
            "id": "sg:person.012113335574.19", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012113335574.19"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Seoul National University", 
              "id": "https://www.grid.ac/institutes/grid.31501.36", 
              "name": [
                "School of Mechanical and Aerospace Engineering, Seoul National University, 151-019, Seoul, Korea"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lee", 
            "givenName": "Giuk", 
            "id": "sg:person.012104115245.07", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012104115245.07"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Seoul National University", 
              "id": "https://www.grid.ac/institutes/grid.31501.36", 
              "name": [
                "School of Mechanical and Aerospace Engineering, Seoul National University, 151-019, Seoul, Korea"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kim", 
            "givenName": "Jongwon", 
            "id": "sg:person.013611426734.26", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013611426734.26"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Yeungnam University", 
              "id": "https://www.grid.ac/institutes/grid.413028.c", 
              "name": [
                "School of Mechanical Engineering, Yeungnam University, 712-749, Yeungnam, Korea"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Seo", 
            "givenName": "TaeWon", 
            "id": "sg:person.012275375477.90", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012275375477.90"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/j.mechmachtheory.2004.12.024", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001492605"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1008158332368", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002263060", 
              "https://doi.org/10.1023/a:1008158332368"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0964-1726/20/11/115021", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005737891"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-10817-4_62", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010997062", 
              "https://doi.org/10.1007/978-3-642-10817-4_62"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-10817-4_62", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010997062", 
              "https://doi.org/10.1007/978-3-642-10817-4_62"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.robot.2012.06.003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019149506"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-26415-9_107", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028788666", 
              "https://doi.org/10.1007/3-540-26415-9_107"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12206-008-0413-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044183437", 
              "https://doi.org/10.1007/s12206-008-0413-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12206-013-0328-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046545818", 
              "https://doi.org/10.1007/s12206-013-0328-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12541-010-0075-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050594398", 
              "https://doi.org/10.1007/s12541-010-0075-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1017/s0263574711000257", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053926218"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1017/s0263574701003964", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1054070445"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1017/s0263574701003964", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1054070445"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/100.392414", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061086113"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/100.894031", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061086214"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tmech.2011.2182617", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061692886"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1115/1.4000313", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062140676"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1115/1.4000962", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062141322"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1115/1.4000962", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062141322"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/robot.1991.131752", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1086276326"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/iros.1992.601942", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1086329004"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/iros.2007.4398999", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1093647058"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/icma.2010.5589061", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1093921819"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/aim.2009.5229885", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094150381"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/robio.2011.6181588", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094279491"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/icdma.2010.205", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094642809"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/ccece.2006.277523", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094675921"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/ccece.2006.277523", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094675921"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/robio.2006.340155", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1095028712"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2014-12", 
        "datePublishedReg": "2014-12-01", 
        "description": "The control of a robot is optimized to improve its energy efficiency and stability in a geometrically complex environment. For this purpose, analysis is performed on the dynamic modeling of a multi-body robot that can transition its position on corners where horizontal ground and a vertical wall intersect. The robot consists of three bodies that can be attached to the wall by permanent magnetic adhesion and connected by links with two types of compliant joints: a passive type with a torsion spring and an active type with a torque-controlled motor. A dynamics model is derived using the Lagrangian formulation, and investigated in the case of internal corner. Difficulties in the analysis of dynamics for this wall-climbing robot came from how to manage external forces. The external forces acting on the wall-climbing robot result from the wall and the magnets, which change the acting points of the forces. Experiments were conducted to determine the magnetic force with respect to distance. Simulation was then performed to verify the dynamic model. The obtained dynamic model can offer a competent tool for the design and control of the autonomous wall-climbing robot, which can be used for the inspection of heavy-industry buildings, and oil tanks where the geometrically horizontal surface and the vertical wall intersect.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s12206-014-1141-z", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1295111", 
            "issn": [
              "1011-8861", 
              "1226-4865"
            ], 
            "name": "Journal of Mechanical Science and Technology", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "12", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "28"
          }
        ], 
        "name": "Dynamic analysis during internal transition of a compliant multi-body climbing robot with magnetic adhesion", 
        "pagination": "5175-5187", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "42436c97505267894a6b0dafab2033abf8e3444e2126f45296556bc8a11be3eb"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s12206-014-1141-z"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1013910019"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s12206-014-1141-z", 
          "https://app.dimensions.ai/details/publication/pub.1013910019"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T22:34", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8690_00000521.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007%2Fs12206-014-1141-z"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12206-014-1141-z'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12206-014-1141-z'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12206-014-1141-z'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12206-014-1141-z'


     

    This table displays all metadata directly associated to this object as RDF triples.

    175 TRIPLES      21 PREDICATES      52 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s12206-014-1141-z schema:about anzsrc-for:08
    2 anzsrc-for:0801
    3 schema:author Nee1c123d922d4a989e0e15dc1ee2c637
    4 schema:citation sg:pub.10.1007/3-540-26415-9_107
    5 sg:pub.10.1007/978-3-642-10817-4_62
    6 sg:pub.10.1007/s12206-008-0413-x
    7 sg:pub.10.1007/s12206-013-0328-2
    8 sg:pub.10.1007/s12541-010-0075-3
    9 sg:pub.10.1023/a:1008158332368
    10 https://doi.org/10.1016/j.mechmachtheory.2004.12.024
    11 https://doi.org/10.1016/j.robot.2012.06.003
    12 https://doi.org/10.1017/s0263574701003964
    13 https://doi.org/10.1017/s0263574711000257
    14 https://doi.org/10.1088/0964-1726/20/11/115021
    15 https://doi.org/10.1109/100.392414
    16 https://doi.org/10.1109/100.894031
    17 https://doi.org/10.1109/aim.2009.5229885
    18 https://doi.org/10.1109/ccece.2006.277523
    19 https://doi.org/10.1109/icdma.2010.205
    20 https://doi.org/10.1109/icma.2010.5589061
    21 https://doi.org/10.1109/iros.1992.601942
    22 https://doi.org/10.1109/iros.2007.4398999
    23 https://doi.org/10.1109/robio.2006.340155
    24 https://doi.org/10.1109/robio.2011.6181588
    25 https://doi.org/10.1109/robot.1991.131752
    26 https://doi.org/10.1109/tmech.2011.2182617
    27 https://doi.org/10.1115/1.4000313
    28 https://doi.org/10.1115/1.4000962
    29 schema:datePublished 2014-12
    30 schema:datePublishedReg 2014-12-01
    31 schema:description The control of a robot is optimized to improve its energy efficiency and stability in a geometrically complex environment. For this purpose, analysis is performed on the dynamic modeling of a multi-body robot that can transition its position on corners where horizontal ground and a vertical wall intersect. The robot consists of three bodies that can be attached to the wall by permanent magnetic adhesion and connected by links with two types of compliant joints: a passive type with a torsion spring and an active type with a torque-controlled motor. A dynamics model is derived using the Lagrangian formulation, and investigated in the case of internal corner. Difficulties in the analysis of dynamics for this wall-climbing robot came from how to manage external forces. The external forces acting on the wall-climbing robot result from the wall and the magnets, which change the acting points of the forces. Experiments were conducted to determine the magnetic force with respect to distance. Simulation was then performed to verify the dynamic model. The obtained dynamic model can offer a competent tool for the design and control of the autonomous wall-climbing robot, which can be used for the inspection of heavy-industry buildings, and oil tanks where the geometrically horizontal surface and the vertical wall intersect.
    32 schema:genre research_article
    33 schema:inLanguage en
    34 schema:isAccessibleForFree false
    35 schema:isPartOf N4e25e8f45d124e34a3a51fd9da8f69ef
    36 Nc057e6e85e8b4a12802b29ff51d41c18
    37 sg:journal.1295111
    38 schema:name Dynamic analysis during internal transition of a compliant multi-body climbing robot with magnetic adhesion
    39 schema:pagination 5175-5187
    40 schema:productId N0218f197b269430d808ceab71e5f88ca
    41 N0c94084cc2634a9290289837f409a9cd
    42 Nd4c00b8b708249809ea959dd2017288b
    43 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013910019
    44 https://doi.org/10.1007/s12206-014-1141-z
    45 schema:sdDatePublished 2019-04-10T22:34
    46 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    47 schema:sdPublisher Nf8f0e8dc5efe49aeadfeb944b52ce3f4
    48 schema:url http://link.springer.com/10.1007%2Fs12206-014-1141-z
    49 sgo:license sg:explorer/license/
    50 sgo:sdDataset articles
    51 rdf:type schema:ScholarlyArticle
    52 N0218f197b269430d808ceab71e5f88ca schema:name readcube_id
    53 schema:value 42436c97505267894a6b0dafab2033abf8e3444e2126f45296556bc8a11be3eb
    54 rdf:type schema:PropertyValue
    55 N0392c222a325435bbe72e30ded60f359 rdf:first sg:person.012104115245.07
    56 rdf:rest N7647c5db12524cf58fb480864ff600c8
    57 N0c94084cc2634a9290289837f409a9cd schema:name doi
    58 schema:value 10.1007/s12206-014-1141-z
    59 rdf:type schema:PropertyValue
    60 N1b1e6f7d6bb94198adfda2cd4d54172d rdf:first sg:person.012275375477.90
    61 rdf:rest rdf:nil
    62 N4e25e8f45d124e34a3a51fd9da8f69ef schema:volumeNumber 28
    63 rdf:type schema:PublicationVolume
    64 N653b920197a3424c8e96f739b25a77b6 rdf:first sg:person.012113335574.19
    65 rdf:rest N0392c222a325435bbe72e30ded60f359
    66 N7647c5db12524cf58fb480864ff600c8 rdf:first sg:person.013611426734.26
    67 rdf:rest N1b1e6f7d6bb94198adfda2cd4d54172d
    68 N8126bdd61a3f42a9a0570175bed7019e schema:affiliation https://www.grid.ac/institutes/grid.168010.e
    69 schema:familyName Nam
    70 schema:givenName Sungmin
    71 rdf:type schema:Person
    72 Nc057e6e85e8b4a12802b29ff51d41c18 schema:issueNumber 12
    73 rdf:type schema:PublicationIssue
    74 Nd4c00b8b708249809ea959dd2017288b schema:name dimensions_id
    75 schema:value pub.1013910019
    76 rdf:type schema:PropertyValue
    77 Nee1c123d922d4a989e0e15dc1ee2c637 rdf:first N8126bdd61a3f42a9a0570175bed7019e
    78 rdf:rest N653b920197a3424c8e96f739b25a77b6
    79 Nf8f0e8dc5efe49aeadfeb944b52ce3f4 schema:name Springer Nature - SN SciGraph project
    80 rdf:type schema:Organization
    81 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    82 schema:name Information and Computing Sciences
    83 rdf:type schema:DefinedTerm
    84 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
    85 schema:name Artificial Intelligence and Image Processing
    86 rdf:type schema:DefinedTerm
    87 sg:journal.1295111 schema:issn 1011-8861
    88 1226-4865
    89 schema:name Journal of Mechanical Science and Technology
    90 rdf:type schema:Periodical
    91 sg:person.012104115245.07 schema:affiliation https://www.grid.ac/institutes/grid.31501.36
    92 schema:familyName Lee
    93 schema:givenName Giuk
    94 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012104115245.07
    95 rdf:type schema:Person
    96 sg:person.012113335574.19 schema:affiliation https://www.grid.ac/institutes/grid.31501.36
    97 schema:familyName Oh
    98 schema:givenName Jongkyun
    99 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012113335574.19
    100 rdf:type schema:Person
    101 sg:person.012275375477.90 schema:affiliation https://www.grid.ac/institutes/grid.413028.c
    102 schema:familyName Seo
    103 schema:givenName TaeWon
    104 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012275375477.90
    105 rdf:type schema:Person
    106 sg:person.013611426734.26 schema:affiliation https://www.grid.ac/institutes/grid.31501.36
    107 schema:familyName Kim
    108 schema:givenName Jongwon
    109 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013611426734.26
    110 rdf:type schema:Person
    111 sg:pub.10.1007/3-540-26415-9_107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028788666
    112 https://doi.org/10.1007/3-540-26415-9_107
    113 rdf:type schema:CreativeWork
    114 sg:pub.10.1007/978-3-642-10817-4_62 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010997062
    115 https://doi.org/10.1007/978-3-642-10817-4_62
    116 rdf:type schema:CreativeWork
    117 sg:pub.10.1007/s12206-008-0413-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1044183437
    118 https://doi.org/10.1007/s12206-008-0413-x
    119 rdf:type schema:CreativeWork
    120 sg:pub.10.1007/s12206-013-0328-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046545818
    121 https://doi.org/10.1007/s12206-013-0328-2
    122 rdf:type schema:CreativeWork
    123 sg:pub.10.1007/s12541-010-0075-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050594398
    124 https://doi.org/10.1007/s12541-010-0075-3
    125 rdf:type schema:CreativeWork
    126 sg:pub.10.1023/a:1008158332368 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002263060
    127 https://doi.org/10.1023/a:1008158332368
    128 rdf:type schema:CreativeWork
    129 https://doi.org/10.1016/j.mechmachtheory.2004.12.024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001492605
    130 rdf:type schema:CreativeWork
    131 https://doi.org/10.1016/j.robot.2012.06.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019149506
    132 rdf:type schema:CreativeWork
    133 https://doi.org/10.1017/s0263574701003964 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054070445
    134 rdf:type schema:CreativeWork
    135 https://doi.org/10.1017/s0263574711000257 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053926218
    136 rdf:type schema:CreativeWork
    137 https://doi.org/10.1088/0964-1726/20/11/115021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005737891
    138 rdf:type schema:CreativeWork
    139 https://doi.org/10.1109/100.392414 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061086113
    140 rdf:type schema:CreativeWork
    141 https://doi.org/10.1109/100.894031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061086214
    142 rdf:type schema:CreativeWork
    143 https://doi.org/10.1109/aim.2009.5229885 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094150381
    144 rdf:type schema:CreativeWork
    145 https://doi.org/10.1109/ccece.2006.277523 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094675921
    146 rdf:type schema:CreativeWork
    147 https://doi.org/10.1109/icdma.2010.205 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094642809
    148 rdf:type schema:CreativeWork
    149 https://doi.org/10.1109/icma.2010.5589061 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093921819
    150 rdf:type schema:CreativeWork
    151 https://doi.org/10.1109/iros.1992.601942 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086329004
    152 rdf:type schema:CreativeWork
    153 https://doi.org/10.1109/iros.2007.4398999 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093647058
    154 rdf:type schema:CreativeWork
    155 https://doi.org/10.1109/robio.2006.340155 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095028712
    156 rdf:type schema:CreativeWork
    157 https://doi.org/10.1109/robio.2011.6181588 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094279491
    158 rdf:type schema:CreativeWork
    159 https://doi.org/10.1109/robot.1991.131752 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086276326
    160 rdf:type schema:CreativeWork
    161 https://doi.org/10.1109/tmech.2011.2182617 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061692886
    162 rdf:type schema:CreativeWork
    163 https://doi.org/10.1115/1.4000313 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062140676
    164 rdf:type schema:CreativeWork
    165 https://doi.org/10.1115/1.4000962 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062141322
    166 rdf:type schema:CreativeWork
    167 https://www.grid.ac/institutes/grid.168010.e schema:alternateName Stanford University
    168 schema:name School of Mechanical Engineering, Stanford University, 94305, Stanford, CA, USA
    169 rdf:type schema:Organization
    170 https://www.grid.ac/institutes/grid.31501.36 schema:alternateName Seoul National University
    171 schema:name School of Mechanical and Aerospace Engineering, Seoul National University, 151-019, Seoul, Korea
    172 rdf:type schema:Organization
    173 https://www.grid.ac/institutes/grid.413028.c schema:alternateName Yeungnam University
    174 schema:name School of Mechanical Engineering, Yeungnam University, 712-749, Yeungnam, Korea
    175 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...