Monitoring of hard turning using acoustic emission signal View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2012-02

AUTHORS

J. Bhaskaran, M. Murugan, N. Balashanmugam, M. Chellamalai

ABSTRACT

Monitoring of tool wear during hard turning is essential. Many investigators have analyzed the acoustic emission (AE) signals generated during machining to understand the metal cutting process and for monitoring tool wear and failure. In the current study on hard turning, the skew and kurtosis parameters of the root mean square values of AE signal (AERMS) are used to monitor tool wear. The rubbing between the tool and the workpiece increases as the tool wear crosses a threshold, thereby shifting the mass of AERMS distribution to right, leading to a negative skew. The increased rubbing also led to a high kurtosis value in the AERMS distribution curve. More... »

PAGES

609-615

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s12206-011-1036-1

DOI

http://dx.doi.org/10.1007/s12206-011-1036-1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1034057184


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "B.S. Abdur Rahman University", 
          "id": "https://www.grid.ac/institutes/grid.449273.f", 
          "name": [
            "Faculty of Mechanical Engineering, B.S. Abdur Rahman University, Chennai, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bhaskaran", 
        "givenName": "J.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "B.S. Abdur Rahman University", 
          "id": "https://www.grid.ac/institutes/grid.449273.f", 
          "name": [
            "Faculty of Mechanical Engineering, B.S. Abdur Rahman University, Chennai, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Murugan", 
        "givenName": "M.", 
        "id": "sg:person.010434245265.20", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010434245265.20"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Central Manufacturing Technology Institute", 
          "id": "https://www.grid.ac/institutes/grid.464765.2", 
          "name": [
            "Central Manufacturing Technology Institute, Bangalore, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Balashanmugam", 
        "givenName": "N.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Central Manufacturing Technology Institute", 
          "id": "https://www.grid.ac/institutes/grid.464765.2", 
          "name": [
            "Central Manufacturing Technology Institute, Bangalore, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chellamalai", 
        "givenName": "M.", 
        "id": "sg:person.014660405365.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014660405365.52"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.jmatprotec.2007.12.018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000663901"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0963-8695(92)90636-u", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001085709"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0963-8695(92)90636-u", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001085709"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0890-6955(99)00103-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002410779"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00170-003-1878-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003833523", 
          "https://doi.org/10.1007/s00170-003-1878-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00170-003-1878-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003833523", 
          "https://doi.org/10.1007/s00170-003-1878-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijmachtools.2004.09.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008609174"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0007-8506(07)63455-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011617713"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0890-6955(01)00108-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012466626"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0890-6955(95)00074-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013855596"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0007-8506(07)62385-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018805159"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijmachtools.2005.02.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019385522"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cirp.2010.05.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023422759"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0007-8506(07)60654-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027954077"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.sna.2006.08.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031679783"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0007-8506(07)61465-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032484908"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0007-8506(07)60768-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033576911"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmatprotec.2005.03.038", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034989174"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00170-003-1569-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038552028", 
          "https://doi.org/10.1007/s00170-003-1569-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0890-6955(03)00110-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038951622"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0890-6955(03)00110-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038951622"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0043-1648(82)90009-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039069156"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0043-1648(82)90009-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039069156"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0007-8506(07)62660-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040309364"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0043-1648(97)00139-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042732732"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0020-7403(80)90029-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043558654"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0020-7403(80)90029-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043558654"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijmachtools.2006.03.020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045145806"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2012-02", 
    "datePublishedReg": "2012-02-01", 
    "description": "Monitoring of tool wear during hard turning is essential. Many investigators have analyzed the acoustic emission (AE) signals generated during machining to understand the metal cutting process and for monitoring tool wear and failure. In the current study on hard turning, the skew and kurtosis parameters of the root mean square values of AE signal (AERMS) are used to monitor tool wear. The rubbing between the tool and the workpiece increases as the tool wear crosses a threshold, thereby shifting the mass of AERMS distribution to right, leading to a negative skew. The increased rubbing also led to a high kurtosis value in the AERMS distribution curve.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s12206-011-1036-1", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1295111", 
        "issn": [
          "1011-8861", 
          "1226-4865"
        ], 
        "name": "Journal of Mechanical Science and Technology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "26"
      }
    ], 
    "name": "Monitoring of hard turning using acoustic emission signal", 
    "pagination": "609-615", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "a23d7344cf6ad0872ef0ae9c5c533fbd67402f0181d7b66ad9d74b03b3024fa8"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s12206-011-1036-1"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1034057184"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s12206-011-1036-1", 
      "https://app.dimensions.ai/details/publication/pub.1034057184"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T18:23", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8675_00000523.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs12206-011-1036-1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12206-011-1036-1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12206-011-1036-1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12206-011-1036-1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12206-011-1036-1'


 

This table displays all metadata directly associated to this object as RDF triples.

154 TRIPLES      21 PREDICATES      50 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s12206-011-1036-1 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author Nb2e0780c8bb14f1396351597009971ed
4 schema:citation sg:pub.10.1007/s00170-003-1569-2
5 sg:pub.10.1007/s00170-003-1878-5
6 https://doi.org/10.1016/0020-7403(80)90029-6
7 https://doi.org/10.1016/0043-1648(82)90009-6
8 https://doi.org/10.1016/0890-6955(95)00074-7
9 https://doi.org/10.1016/0963-8695(92)90636-u
10 https://doi.org/10.1016/j.cirp.2010.05.010
11 https://doi.org/10.1016/j.ijmachtools.2004.09.007
12 https://doi.org/10.1016/j.ijmachtools.2005.02.007
13 https://doi.org/10.1016/j.ijmachtools.2006.03.020
14 https://doi.org/10.1016/j.jmatprotec.2005.03.038
15 https://doi.org/10.1016/j.jmatprotec.2007.12.018
16 https://doi.org/10.1016/j.sna.2006.08.011
17 https://doi.org/10.1016/s0007-8506(07)60654-4
18 https://doi.org/10.1016/s0007-8506(07)60768-9
19 https://doi.org/10.1016/s0007-8506(07)61465-6
20 https://doi.org/10.1016/s0007-8506(07)62385-3
21 https://doi.org/10.1016/s0007-8506(07)62660-2
22 https://doi.org/10.1016/s0007-8506(07)63455-6
23 https://doi.org/10.1016/s0043-1648(97)00139-7
24 https://doi.org/10.1016/s0890-6955(01)00108-0
25 https://doi.org/10.1016/s0890-6955(03)00110-x
26 https://doi.org/10.1016/s0890-6955(99)00103-0
27 schema:datePublished 2012-02
28 schema:datePublishedReg 2012-02-01
29 schema:description Monitoring of tool wear during hard turning is essential. Many investigators have analyzed the acoustic emission (AE) signals generated during machining to understand the metal cutting process and for monitoring tool wear and failure. In the current study on hard turning, the skew and kurtosis parameters of the root mean square values of AE signal (AERMS) are used to monitor tool wear. The rubbing between the tool and the workpiece increases as the tool wear crosses a threshold, thereby shifting the mass of AERMS distribution to right, leading to a negative skew. The increased rubbing also led to a high kurtosis value in the AERMS distribution curve.
30 schema:genre research_article
31 schema:inLanguage en
32 schema:isAccessibleForFree false
33 schema:isPartOf N46c4005ea953401e8af53971703d34a7
34 N8a8806ac19774a6da5c9c6afe2d33e39
35 sg:journal.1295111
36 schema:name Monitoring of hard turning using acoustic emission signal
37 schema:pagination 609-615
38 schema:productId N2e1272967c3e4e3b856858a391c8d1ed
39 N661eb9eb1e21491ca8be19be147e7710
40 N8e81ef1c361c4837b5f58ad02a135ca8
41 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034057184
42 https://doi.org/10.1007/s12206-011-1036-1
43 schema:sdDatePublished 2019-04-10T18:23
44 schema:sdLicense https://scigraph.springernature.com/explorer/license/
45 schema:sdPublisher N10e55902579247418e5cdb1c030bf3c8
46 schema:url http://link.springer.com/10.1007%2Fs12206-011-1036-1
47 sgo:license sg:explorer/license/
48 sgo:sdDataset articles
49 rdf:type schema:ScholarlyArticle
50 N08680d9e69ea48f7abbe232e78f4f8f6 rdf:first sg:person.014660405365.52
51 rdf:rest rdf:nil
52 N10e55902579247418e5cdb1c030bf3c8 schema:name Springer Nature - SN SciGraph project
53 rdf:type schema:Organization
54 N2e1272967c3e4e3b856858a391c8d1ed schema:name readcube_id
55 schema:value a23d7344cf6ad0872ef0ae9c5c533fbd67402f0181d7b66ad9d74b03b3024fa8
56 rdf:type schema:PropertyValue
57 N46c4005ea953401e8af53971703d34a7 schema:issueNumber 2
58 rdf:type schema:PublicationIssue
59 N5698129e1be74649a302ea15dab9cd0c schema:affiliation https://www.grid.ac/institutes/grid.449273.f
60 schema:familyName Bhaskaran
61 schema:givenName J.
62 rdf:type schema:Person
63 N57e9ba64de444bd9853a0307a5b35d11 schema:affiliation https://www.grid.ac/institutes/grid.464765.2
64 schema:familyName Balashanmugam
65 schema:givenName N.
66 rdf:type schema:Person
67 N661eb9eb1e21491ca8be19be147e7710 schema:name dimensions_id
68 schema:value pub.1034057184
69 rdf:type schema:PropertyValue
70 N8a8806ac19774a6da5c9c6afe2d33e39 schema:volumeNumber 26
71 rdf:type schema:PublicationVolume
72 N8e81ef1c361c4837b5f58ad02a135ca8 schema:name doi
73 schema:value 10.1007/s12206-011-1036-1
74 rdf:type schema:PropertyValue
75 Nb2e0780c8bb14f1396351597009971ed rdf:first N5698129e1be74649a302ea15dab9cd0c
76 rdf:rest Nf7b097c2dbf145d3aa7f9d33d0c9eda9
77 Nde1275b524374b97beacc4d4a90674da rdf:first N57e9ba64de444bd9853a0307a5b35d11
78 rdf:rest N08680d9e69ea48f7abbe232e78f4f8f6
79 Nf7b097c2dbf145d3aa7f9d33d0c9eda9 rdf:first sg:person.010434245265.20
80 rdf:rest Nde1275b524374b97beacc4d4a90674da
81 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
82 schema:name Engineering
83 rdf:type schema:DefinedTerm
84 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
85 schema:name Materials Engineering
86 rdf:type schema:DefinedTerm
87 sg:journal.1295111 schema:issn 1011-8861
88 1226-4865
89 schema:name Journal of Mechanical Science and Technology
90 rdf:type schema:Periodical
91 sg:person.010434245265.20 schema:affiliation https://www.grid.ac/institutes/grid.449273.f
92 schema:familyName Murugan
93 schema:givenName M.
94 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010434245265.20
95 rdf:type schema:Person
96 sg:person.014660405365.52 schema:affiliation https://www.grid.ac/institutes/grid.464765.2
97 schema:familyName Chellamalai
98 schema:givenName M.
99 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014660405365.52
100 rdf:type schema:Person
101 sg:pub.10.1007/s00170-003-1569-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038552028
102 https://doi.org/10.1007/s00170-003-1569-2
103 rdf:type schema:CreativeWork
104 sg:pub.10.1007/s00170-003-1878-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003833523
105 https://doi.org/10.1007/s00170-003-1878-5
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1016/0020-7403(80)90029-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043558654
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1016/0043-1648(82)90009-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039069156
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1016/0890-6955(95)00074-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013855596
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1016/0963-8695(92)90636-u schema:sameAs https://app.dimensions.ai/details/publication/pub.1001085709
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1016/j.cirp.2010.05.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023422759
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1016/j.ijmachtools.2004.09.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008609174
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1016/j.ijmachtools.2005.02.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019385522
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1016/j.ijmachtools.2006.03.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045145806
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1016/j.jmatprotec.2005.03.038 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034989174
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1016/j.jmatprotec.2007.12.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000663901
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1016/j.sna.2006.08.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031679783
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1016/s0007-8506(07)60654-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027954077
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1016/s0007-8506(07)60768-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033576911
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1016/s0007-8506(07)61465-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032484908
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1016/s0007-8506(07)62385-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018805159
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1016/s0007-8506(07)62660-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040309364
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1016/s0007-8506(07)63455-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011617713
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1016/s0043-1648(97)00139-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042732732
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1016/s0890-6955(01)00108-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012466626
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1016/s0890-6955(03)00110-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1038951622
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1016/s0890-6955(99)00103-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002410779
148 rdf:type schema:CreativeWork
149 https://www.grid.ac/institutes/grid.449273.f schema:alternateName B.S. Abdur Rahman University
150 schema:name Faculty of Mechanical Engineering, B.S. Abdur Rahman University, Chennai, India
151 rdf:type schema:Organization
152 https://www.grid.ac/institutes/grid.464765.2 schema:alternateName Central Manufacturing Technology Institute
153 schema:name Central Manufacturing Technology Institute, Bangalore, India
154 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...