Investigation of empirical correlations on the determination of condensation heat transfer characteristics during downward annular flow of R134a inside a ... View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2011-10

AUTHORS

Muhammet Balcılar, Ahmet Selim Dalkılıç, Berna Bolat, Somchai Wongwises

ABSTRACT

The heat transfer characteristics of R134a during downward condensation are investigated experimentally and numerically. While the convective heat transfer coefficient, two-phase multiplier and frictional pressure drop are considered to be the significant variables as output for the analysis, inputs of the computational numerical techniques include the important two-phase flow parameters such as equivalent Reynolds number, Prandtl number, Bond number, Froude number, Lockhart and Martinelli number. Genetic algorithm technique (GA), unconstrained nonlinear minimization algorithm-Nelder-Mead method (NM) and non-linear least squares error method (NLS) are applied for the optimization of these significant variables in this study. Regression analysis gave convincing correlations on the prediction of condensation heat transfer characteristics using ±30% deviation band for practical applications. The most suitable coefficients of the proposed correlations are depicted to be compatible with the large number of experimental data by means of the computational numerical methods. Validation process of the proposed correlations is accomplished by means of the comparison between the various correlations reported in the literature. More... »

PAGES

2683

References to SciGraph publications

  • 1998-08. CONDENSATION—Conditional Density Propagation for Visual Tracking in INTERNATIONAL JOURNAL OF COMPUTER VISION
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s12206-011-0618-2

    DOI

    http://dx.doi.org/10.1007/s12206-011-0618-2

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1043355399


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0915", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Interdisciplinary Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Y\u0131ld\u0131z Technical University", 
              "id": "https://www.grid.ac/institutes/grid.38575.3c", 
              "name": [
                "Computer Engineering Department, Yildiz Technical University, 34349, Yildiz, Besiktas, Istanbul, Turkey"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Balc\u0131lar", 
            "givenName": "Muhammet", 
            "id": "sg:person.015631502653.10", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015631502653.10"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Y\u0131ld\u0131z Technical University", 
              "id": "https://www.grid.ac/institutes/grid.38575.3c", 
              "name": [
                "Heat and Thermodynamics Division, Department of Mechanical Engineering, Yildiz Technical University, 34349, Yildiz, Besiktas, Istanbul, Turkey"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Dalk\u0131l\u0131\u00e7", 
            "givenName": "Ahmet Selim", 
            "id": "sg:person.010156117345.67", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010156117345.67"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Y\u0131ld\u0131z Technical University", 
              "id": "https://www.grid.ac/institutes/grid.38575.3c", 
              "name": [
                "Design Division, Department of Mechanical Engineering, Yildiz Technical University, 34349, Yildiz, Besiktas, Istanbul, Turkey"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Bolat", 
            "givenName": "Berna", 
            "id": "sg:person.013574202636.31", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013574202636.31"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "King Mongkut's University of Technology Thonburi", 
              "id": "https://www.grid.ac/institutes/grid.412151.2", 
              "name": [
                "Fluid Mechanics, Thermal Engineering and Multiphase Flow Research Lab. (FUTURE), Department of Mechanical Engineering, King Mongkut\u2019s University of Technology Thonburi, 10140, Bangmod, Bangkok, Thailand", 
                "The Royal Institute of Thailand, Academy of Science, 10300, Sanam Suea Pa, Dusit, Bangkok, Thailand"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wongwises", 
            "givenName": "Somchai", 
            "id": "sg:person.012267021412.00", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012267021412.00"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/j.pnucene.2010.02.001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000055205"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ijheatmasstransfer.2009.09.011", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002016194"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0141-0296(96)00074-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002681672"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.icheatmasstransfer.2010.07.006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003967273"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0098-3004(97)00129-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004139553"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.pnucene.2005.03.015", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008189348"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.icheatmasstransfer.2009.03.024", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011006147"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.icheatmasstransfer.2008.10.015", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012166841"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1008078328650", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012498237", 
              "https://doi.org/10.1023/a:1008078328650"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.enconman.2010.05.019", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012977159"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ijheatmasstransfer.2005.12.021", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022618576"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0010-4485(03)00003-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023247674"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0010-4485(03)00003-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023247674"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ijheatmasstransfer.2009.01.011", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024721154"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0255-2701(02)00203-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024903425"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0255-2701(02)00203-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024903425"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.icheatmasstransfer.2008.04.001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026732656"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.icheatmasstransfer.2010.02.010", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028278016"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.cej.2008.12.011", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028306306"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.engappai.2005.01.007", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030024246"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0262-8856(02)00047-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030223325"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.applthermaleng.2009.06.006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031440675"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.icheatmasstransfer.2009.06.017", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032583701"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0140-7007(90)90038-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034641540"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0140-7007(90)90038-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034641540"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/01457632.2010.505127", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035609405"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ijheatmasstransfer.2009.12.051", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038781369"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.anucene.2010.02.004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041745828"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.icheatmasstransfer.2008.06.002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042968824"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0140-7007(95)90316-r", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043010490"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/comjnl/7.4.308", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043067538"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ijheatmasstransfer.2010.06.057", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044155060"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0017-9310(79)90058-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044204317"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0017-9310(79)90058-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044204317"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ijheatmasstransfer.2008.05.035", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045310559"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.applthermaleng.2009.02.001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047905212"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.icheatmasstransfer.2009.05.005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048641779"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0017-9310(00)00015-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048940623"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.expthermflusci.2009.12.011", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049474671"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0017-9310(67)90047-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052337910"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1115/1.2830043", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062086655"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1615/jenhheattransf.v2.i1-2.140", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1068145714"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1615/jenhheattransf.v7.i5.20", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1068145907"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2011-10", 
        "datePublishedReg": "2011-10-01", 
        "description": "The heat transfer characteristics of R134a during downward condensation are investigated experimentally and numerically. While the convective heat transfer coefficient, two-phase multiplier and frictional pressure drop are considered to be the significant variables as output for the analysis, inputs of the computational numerical techniques include the important two-phase flow parameters such as equivalent Reynolds number, Prandtl number, Bond number, Froude number, Lockhart and Martinelli number. Genetic algorithm technique (GA), unconstrained nonlinear minimization algorithm-Nelder-Mead method (NM) and non-linear least squares error method (NLS) are applied for the optimization of these significant variables in this study. Regression analysis gave convincing correlations on the prediction of condensation heat transfer characteristics using \u00b130% deviation band for practical applications. The most suitable coefficients of the proposed correlations are depicted to be compatible with the large number of experimental data by means of the computational numerical methods. Validation process of the proposed correlations is accomplished by means of the comparison between the various correlations reported in the literature.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s12206-011-0618-2", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1295111", 
            "issn": [
              "1011-8861", 
              "1226-4865"
            ], 
            "name": "Journal of Mechanical Science and Technology", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "10", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "25"
          }
        ], 
        "name": "Investigation of empirical correlations on the determination of condensation heat transfer characteristics during downward annular flow of R134a inside a vertical smooth tube using artificial intelligence algorithms", 
        "pagination": "2683", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "ce84e52cc7ccaf4d50005c330292c6816144ae5e7890bd556c4596ffc3aeffca"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s12206-011-0618-2"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1043355399"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s12206-011-0618-2", 
          "https://app.dimensions.ai/details/publication/pub.1043355399"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T13:20", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8659_00000523.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007%2Fs12206-011-0618-2"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12206-011-0618-2'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12206-011-0618-2'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12206-011-0618-2'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12206-011-0618-2'


     

    This table displays all metadata directly associated to this object as RDF triples.

    206 TRIPLES      21 PREDICATES      66 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s12206-011-0618-2 schema:about anzsrc-for:09
    2 anzsrc-for:0915
    3 schema:author Nd5b2a3e51fee434696a79ce79d2acadb
    4 schema:citation sg:pub.10.1023/a:1008078328650
    5 https://doi.org/10.1016/0017-9310(67)90047-6
    6 https://doi.org/10.1016/0017-9310(79)90058-9
    7 https://doi.org/10.1016/0140-7007(90)90038-x
    8 https://doi.org/10.1016/0140-7007(95)90316-r
    9 https://doi.org/10.1016/j.anucene.2010.02.004
    10 https://doi.org/10.1016/j.applthermaleng.2009.02.001
    11 https://doi.org/10.1016/j.applthermaleng.2009.06.006
    12 https://doi.org/10.1016/j.cej.2008.12.011
    13 https://doi.org/10.1016/j.enconman.2010.05.019
    14 https://doi.org/10.1016/j.engappai.2005.01.007
    15 https://doi.org/10.1016/j.expthermflusci.2009.12.011
    16 https://doi.org/10.1016/j.icheatmasstransfer.2008.04.001
    17 https://doi.org/10.1016/j.icheatmasstransfer.2008.06.002
    18 https://doi.org/10.1016/j.icheatmasstransfer.2008.10.015
    19 https://doi.org/10.1016/j.icheatmasstransfer.2009.03.024
    20 https://doi.org/10.1016/j.icheatmasstransfer.2009.05.005
    21 https://doi.org/10.1016/j.icheatmasstransfer.2009.06.017
    22 https://doi.org/10.1016/j.icheatmasstransfer.2010.02.010
    23 https://doi.org/10.1016/j.icheatmasstransfer.2010.07.006
    24 https://doi.org/10.1016/j.ijheatmasstransfer.2005.12.021
    25 https://doi.org/10.1016/j.ijheatmasstransfer.2008.05.035
    26 https://doi.org/10.1016/j.ijheatmasstransfer.2009.01.011
    27 https://doi.org/10.1016/j.ijheatmasstransfer.2009.09.011
    28 https://doi.org/10.1016/j.ijheatmasstransfer.2009.12.051
    29 https://doi.org/10.1016/j.ijheatmasstransfer.2010.06.057
    30 https://doi.org/10.1016/j.pnucene.2005.03.015
    31 https://doi.org/10.1016/j.pnucene.2010.02.001
    32 https://doi.org/10.1016/s0010-4485(03)00003-4
    33 https://doi.org/10.1016/s0017-9310(00)00015-6
    34 https://doi.org/10.1016/s0098-3004(97)00129-5
    35 https://doi.org/10.1016/s0141-0296(96)00074-0
    36 https://doi.org/10.1016/s0255-2701(02)00203-9
    37 https://doi.org/10.1016/s0262-8856(02)00047-1
    38 https://doi.org/10.1080/01457632.2010.505127
    39 https://doi.org/10.1093/comjnl/7.4.308
    40 https://doi.org/10.1115/1.2830043
    41 https://doi.org/10.1615/jenhheattransf.v2.i1-2.140
    42 https://doi.org/10.1615/jenhheattransf.v7.i5.20
    43 schema:datePublished 2011-10
    44 schema:datePublishedReg 2011-10-01
    45 schema:description The heat transfer characteristics of R134a during downward condensation are investigated experimentally and numerically. While the convective heat transfer coefficient, two-phase multiplier and frictional pressure drop are considered to be the significant variables as output for the analysis, inputs of the computational numerical techniques include the important two-phase flow parameters such as equivalent Reynolds number, Prandtl number, Bond number, Froude number, Lockhart and Martinelli number. Genetic algorithm technique (GA), unconstrained nonlinear minimization algorithm-Nelder-Mead method (NM) and non-linear least squares error method (NLS) are applied for the optimization of these significant variables in this study. Regression analysis gave convincing correlations on the prediction of condensation heat transfer characteristics using ±30% deviation band for practical applications. The most suitable coefficients of the proposed correlations are depicted to be compatible with the large number of experimental data by means of the computational numerical methods. Validation process of the proposed correlations is accomplished by means of the comparison between the various correlations reported in the literature.
    46 schema:genre research_article
    47 schema:inLanguage en
    48 schema:isAccessibleForFree false
    49 schema:isPartOf N1ae4ef6e464d4159ae7671d51a8511cd
    50 N39c5940457bb41ac9c86f12ac16517ed
    51 sg:journal.1295111
    52 schema:name Investigation of empirical correlations on the determination of condensation heat transfer characteristics during downward annular flow of R134a inside a vertical smooth tube using artificial intelligence algorithms
    53 schema:pagination 2683
    54 schema:productId N530e8003c38949d9bbf51d4c0e35bbac
    55 N9c7bdb7260a749d2b18025735a0be41a
    56 Nf51770a9e59143a196ca04fa966d70d4
    57 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043355399
    58 https://doi.org/10.1007/s12206-011-0618-2
    59 schema:sdDatePublished 2019-04-10T13:20
    60 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    61 schema:sdPublisher N76e929c36ccf4c2290a4f13462e05ebe
    62 schema:url http://link.springer.com/10.1007%2Fs12206-011-0618-2
    63 sgo:license sg:explorer/license/
    64 sgo:sdDataset articles
    65 rdf:type schema:ScholarlyArticle
    66 N010ddb5d16644a05a9eb774d89da807e rdf:first sg:person.010156117345.67
    67 rdf:rest Na26a6e0d53b44c088ae096b85a9a4dd5
    68 N021ab09287ef455980a06257aab28d0f rdf:first sg:person.012267021412.00
    69 rdf:rest rdf:nil
    70 N1ae4ef6e464d4159ae7671d51a8511cd schema:issueNumber 10
    71 rdf:type schema:PublicationIssue
    72 N39c5940457bb41ac9c86f12ac16517ed schema:volumeNumber 25
    73 rdf:type schema:PublicationVolume
    74 N530e8003c38949d9bbf51d4c0e35bbac schema:name dimensions_id
    75 schema:value pub.1043355399
    76 rdf:type schema:PropertyValue
    77 N76e929c36ccf4c2290a4f13462e05ebe schema:name Springer Nature - SN SciGraph project
    78 rdf:type schema:Organization
    79 N9c7bdb7260a749d2b18025735a0be41a schema:name doi
    80 schema:value 10.1007/s12206-011-0618-2
    81 rdf:type schema:PropertyValue
    82 Na26a6e0d53b44c088ae096b85a9a4dd5 rdf:first sg:person.013574202636.31
    83 rdf:rest N021ab09287ef455980a06257aab28d0f
    84 Nd5b2a3e51fee434696a79ce79d2acadb rdf:first sg:person.015631502653.10
    85 rdf:rest N010ddb5d16644a05a9eb774d89da807e
    86 Nf51770a9e59143a196ca04fa966d70d4 schema:name readcube_id
    87 schema:value ce84e52cc7ccaf4d50005c330292c6816144ae5e7890bd556c4596ffc3aeffca
    88 rdf:type schema:PropertyValue
    89 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    90 schema:name Engineering
    91 rdf:type schema:DefinedTerm
    92 anzsrc-for:0915 schema:inDefinedTermSet anzsrc-for:
    93 schema:name Interdisciplinary Engineering
    94 rdf:type schema:DefinedTerm
    95 sg:journal.1295111 schema:issn 1011-8861
    96 1226-4865
    97 schema:name Journal of Mechanical Science and Technology
    98 rdf:type schema:Periodical
    99 sg:person.010156117345.67 schema:affiliation https://www.grid.ac/institutes/grid.38575.3c
    100 schema:familyName Dalkılıç
    101 schema:givenName Ahmet Selim
    102 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010156117345.67
    103 rdf:type schema:Person
    104 sg:person.012267021412.00 schema:affiliation https://www.grid.ac/institutes/grid.412151.2
    105 schema:familyName Wongwises
    106 schema:givenName Somchai
    107 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012267021412.00
    108 rdf:type schema:Person
    109 sg:person.013574202636.31 schema:affiliation https://www.grid.ac/institutes/grid.38575.3c
    110 schema:familyName Bolat
    111 schema:givenName Berna
    112 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013574202636.31
    113 rdf:type schema:Person
    114 sg:person.015631502653.10 schema:affiliation https://www.grid.ac/institutes/grid.38575.3c
    115 schema:familyName Balcılar
    116 schema:givenName Muhammet
    117 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015631502653.10
    118 rdf:type schema:Person
    119 sg:pub.10.1023/a:1008078328650 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012498237
    120 https://doi.org/10.1023/a:1008078328650
    121 rdf:type schema:CreativeWork
    122 https://doi.org/10.1016/0017-9310(67)90047-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052337910
    123 rdf:type schema:CreativeWork
    124 https://doi.org/10.1016/0017-9310(79)90058-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044204317
    125 rdf:type schema:CreativeWork
    126 https://doi.org/10.1016/0140-7007(90)90038-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1034641540
    127 rdf:type schema:CreativeWork
    128 https://doi.org/10.1016/0140-7007(95)90316-r schema:sameAs https://app.dimensions.ai/details/publication/pub.1043010490
    129 rdf:type schema:CreativeWork
    130 https://doi.org/10.1016/j.anucene.2010.02.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041745828
    131 rdf:type schema:CreativeWork
    132 https://doi.org/10.1016/j.applthermaleng.2009.02.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047905212
    133 rdf:type schema:CreativeWork
    134 https://doi.org/10.1016/j.applthermaleng.2009.06.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031440675
    135 rdf:type schema:CreativeWork
    136 https://doi.org/10.1016/j.cej.2008.12.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028306306
    137 rdf:type schema:CreativeWork
    138 https://doi.org/10.1016/j.enconman.2010.05.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012977159
    139 rdf:type schema:CreativeWork
    140 https://doi.org/10.1016/j.engappai.2005.01.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030024246
    141 rdf:type schema:CreativeWork
    142 https://doi.org/10.1016/j.expthermflusci.2009.12.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049474671
    143 rdf:type schema:CreativeWork
    144 https://doi.org/10.1016/j.icheatmasstransfer.2008.04.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026732656
    145 rdf:type schema:CreativeWork
    146 https://doi.org/10.1016/j.icheatmasstransfer.2008.06.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042968824
    147 rdf:type schema:CreativeWork
    148 https://doi.org/10.1016/j.icheatmasstransfer.2008.10.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012166841
    149 rdf:type schema:CreativeWork
    150 https://doi.org/10.1016/j.icheatmasstransfer.2009.03.024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011006147
    151 rdf:type schema:CreativeWork
    152 https://doi.org/10.1016/j.icheatmasstransfer.2009.05.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048641779
    153 rdf:type schema:CreativeWork
    154 https://doi.org/10.1016/j.icheatmasstransfer.2009.06.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032583701
    155 rdf:type schema:CreativeWork
    156 https://doi.org/10.1016/j.icheatmasstransfer.2010.02.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028278016
    157 rdf:type schema:CreativeWork
    158 https://doi.org/10.1016/j.icheatmasstransfer.2010.07.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003967273
    159 rdf:type schema:CreativeWork
    160 https://doi.org/10.1016/j.ijheatmasstransfer.2005.12.021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022618576
    161 rdf:type schema:CreativeWork
    162 https://doi.org/10.1016/j.ijheatmasstransfer.2008.05.035 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045310559
    163 rdf:type schema:CreativeWork
    164 https://doi.org/10.1016/j.ijheatmasstransfer.2009.01.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024721154
    165 rdf:type schema:CreativeWork
    166 https://doi.org/10.1016/j.ijheatmasstransfer.2009.09.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002016194
    167 rdf:type schema:CreativeWork
    168 https://doi.org/10.1016/j.ijheatmasstransfer.2009.12.051 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038781369
    169 rdf:type schema:CreativeWork
    170 https://doi.org/10.1016/j.ijheatmasstransfer.2010.06.057 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044155060
    171 rdf:type schema:CreativeWork
    172 https://doi.org/10.1016/j.pnucene.2005.03.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008189348
    173 rdf:type schema:CreativeWork
    174 https://doi.org/10.1016/j.pnucene.2010.02.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000055205
    175 rdf:type schema:CreativeWork
    176 https://doi.org/10.1016/s0010-4485(03)00003-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023247674
    177 rdf:type schema:CreativeWork
    178 https://doi.org/10.1016/s0017-9310(00)00015-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048940623
    179 rdf:type schema:CreativeWork
    180 https://doi.org/10.1016/s0098-3004(97)00129-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004139553
    181 rdf:type schema:CreativeWork
    182 https://doi.org/10.1016/s0141-0296(96)00074-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002681672
    183 rdf:type schema:CreativeWork
    184 https://doi.org/10.1016/s0255-2701(02)00203-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024903425
    185 rdf:type schema:CreativeWork
    186 https://doi.org/10.1016/s0262-8856(02)00047-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030223325
    187 rdf:type schema:CreativeWork
    188 https://doi.org/10.1080/01457632.2010.505127 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035609405
    189 rdf:type schema:CreativeWork
    190 https://doi.org/10.1093/comjnl/7.4.308 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043067538
    191 rdf:type schema:CreativeWork
    192 https://doi.org/10.1115/1.2830043 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062086655
    193 rdf:type schema:CreativeWork
    194 https://doi.org/10.1615/jenhheattransf.v2.i1-2.140 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068145714
    195 rdf:type schema:CreativeWork
    196 https://doi.org/10.1615/jenhheattransf.v7.i5.20 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068145907
    197 rdf:type schema:CreativeWork
    198 https://www.grid.ac/institutes/grid.38575.3c schema:alternateName Yıldız Technical University
    199 schema:name Computer Engineering Department, Yildiz Technical University, 34349, Yildiz, Besiktas, Istanbul, Turkey
    200 Design Division, Department of Mechanical Engineering, Yildiz Technical University, 34349, Yildiz, Besiktas, Istanbul, Turkey
    201 Heat and Thermodynamics Division, Department of Mechanical Engineering, Yildiz Technical University, 34349, Yildiz, Besiktas, Istanbul, Turkey
    202 rdf:type schema:Organization
    203 https://www.grid.ac/institutes/grid.412151.2 schema:alternateName King Mongkut's University of Technology Thonburi
    204 schema:name Fluid Mechanics, Thermal Engineering and Multiphase Flow Research Lab. (FUTURE), Department of Mechanical Engineering, King Mongkut’s University of Technology Thonburi, 10140, Bangmod, Bangkok, Thailand
    205 The Royal Institute of Thailand, Academy of Science, 10300, Sanam Suea Pa, Dusit, Bangkok, Thailand
    206 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...