Optimal microchannel design using genetic algorithms View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2009-05

AUTHORS

Hyunwoo Bang, Won Gu Lee, Junha Park, Hoyoung Yun, Junggi Min, Dong-Chul Han

ABSTRACT

This paper presents a novel method of optimizing particle-suspended microfluidic channels using genetic algorithms (GAs). The GAs can be used to generate an optimal microchannel design by varying its geometrical parameters. A heuristic simulation can be useful for simulating the emergent behaviors of particles resulting from their interaction with a virtual microchannel environment. At the same time, fitness evaluation enables us to direct evolutions towards an optimized microchannel design. Specifically, this technique can be used to demonstrate its feasibility by optimizing one commercialized product for clinical applications such as the microchannel-type imaging flow cytometry of human erythrocytes. The resulting channel design can also be fabricated and then compared to its counterpart. This result implies that this approach can be potentially beneficial for developing a complex microchannel design in a controlled manner. More... »

PAGES

1500-1507

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s12206-009-0403-7

DOI

http://dx.doi.org/10.1007/s12206-009-0403-7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1045796623


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Seoul National University", 
          "id": "https://www.grid.ac/institutes/grid.31501.36", 
          "name": [
            "School of Mechanical and Aerospace Engineering and Institute of Advanced Machinery & Design, Seoul National University, Shillim 9-dong Gwanak-gu, 151-742, Seoul, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bang", 
        "givenName": "Hyunwoo", 
        "id": "sg:person.01355261131.57", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01355261131.57"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Seoul National University", 
          "id": "https://www.grid.ac/institutes/grid.31501.36", 
          "name": [
            "School of Mechanical and Aerospace Engineering and Institute of Advanced Machinery & Design, Seoul National University, Shillim 9-dong Gwanak-gu, 151-742, Seoul, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lee", 
        "givenName": "Won Gu", 
        "id": "sg:person.0717552420.20", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0717552420.20"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Digital Bio Technology, Inc., Shillim 9-dong Gwanak-gu, 151-742, Seoul, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Park", 
        "givenName": "Junha", 
        "id": "sg:person.01160646021.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01160646021.42"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Seoul National University", 
          "id": "https://www.grid.ac/institutes/grid.31501.36", 
          "name": [
            "School of Mechanical and Aerospace Engineering and Institute of Advanced Machinery & Design, Seoul National University, Shillim 9-dong Gwanak-gu, 151-742, Seoul, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yun", 
        "givenName": "Hoyoung", 
        "id": "sg:person.01221703242.39", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01221703242.39"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Seoul National University", 
          "id": "https://www.grid.ac/institutes/grid.31501.36", 
          "name": [
            "School of Mechanical and Aerospace Engineering and Institute of Advanced Machinery & Design, Seoul National University, Shillim 9-dong Gwanak-gu, 151-742, Seoul, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Min", 
        "givenName": "Junggi", 
        "id": "sg:person.01270016442.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01270016442.48"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Seoul National University", 
          "id": "https://www.grid.ac/institutes/grid.31501.36", 
          "name": [
            "School of Mechanical and Aerospace Engineering and Institute of Advanced Machinery & Design, Seoul National University, Shillim 9-dong Gwanak-gu, 151-742, Seoul, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Han", 
        "givenName": "Dong-Chul", 
        "id": "sg:person.014751104554.20", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014751104554.20"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.engappai.2004.10.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000291723"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijmultiphaseflow.2004.12.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000420897"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0960-1317/14/8/007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006431529"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02982433", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015965330", 
          "https://doi.org/10.1007/bf02982433"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02984012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016718611", 
          "https://doi.org/10.1007/bf02984012"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/37402.37406", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017016808"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12206-008-0402-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017379087", 
          "https://doi.org/10.1007/s12206-008-0402-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcis.2005.09.039", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021760076"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.advengsoft.2005.03.022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024319483"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1117/12.472741", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026436862"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.compstruct.2005.06.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031452013"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.compstruct.2005.06.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031452013"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02984389", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031741711", 
          "https://doi.org/10.1007/bf02984389"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcis.2005.04.104", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033407859"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1146/annurev.fluid.36.050802.122124", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034529035"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0303-2647(95)01556-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037092902"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1046/j.1365-2257.2003.00494.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038371307"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cap.2005.07.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039959686"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02983286", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042608913", 
          "https://doi.org/10.1007/bf02983286"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/(sici)1097-0320(19990401)35:4<291::aid-cyto1>3.0.co;2-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045977436"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.amc.2005.07.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052541568"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac002800y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054989324"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac002800y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054989324"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.277.5334.1931", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062558088"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2009-05", 
    "datePublishedReg": "2009-05-01", 
    "description": "This paper presents a novel method of optimizing particle-suspended microfluidic channels using genetic algorithms (GAs). The GAs can be used to generate an optimal microchannel design by varying its geometrical parameters. A heuristic simulation can be useful for simulating the emergent behaviors of particles resulting from their interaction with a virtual microchannel environment. At the same time, fitness evaluation enables us to direct evolutions towards an optimized microchannel design. Specifically, this technique can be used to demonstrate its feasibility by optimizing one commercialized product for clinical applications such as the microchannel-type imaging flow cytometry of human erythrocytes. The resulting channel design can also be fabricated and then compared to its counterpart. This result implies that this approach can be potentially beneficial for developing a complex microchannel design in a controlled manner.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s12206-009-0403-7", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1295111", 
        "issn": [
          "1011-8861", 
          "1226-4865"
        ], 
        "name": "Journal of Mechanical Science and Technology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "23"
      }
    ], 
    "name": "Optimal microchannel design using genetic algorithms", 
    "pagination": "1500-1507", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "da25dda1629f3c47bc9089b405ddc000e78925a79b2ae042c64a123148125012"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s12206-009-0403-7"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1045796623"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s12206-009-0403-7", 
      "https://app.dimensions.ai/details/publication/pub.1045796623"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T09:18", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000339_0000000339/records_109493_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs12206-009-0403-7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12206-009-0403-7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12206-009-0403-7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12206-009-0403-7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12206-009-0403-7'


 

This table displays all metadata directly associated to this object as RDF triples.

169 TRIPLES      21 PREDICATES      49 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s12206-009-0403-7 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author Nd3a554d0ff0c44cb9b4acee8dc8ae25f
4 schema:citation sg:pub.10.1007/bf02982433
5 sg:pub.10.1007/bf02983286
6 sg:pub.10.1007/bf02984012
7 sg:pub.10.1007/bf02984389
8 sg:pub.10.1007/s12206-008-0402-0
9 https://doi.org/10.1002/(sici)1097-0320(19990401)35:4<291::aid-cyto1>3.0.co;2-y
10 https://doi.org/10.1016/0303-2647(95)01556-6
11 https://doi.org/10.1016/j.advengsoft.2005.03.022
12 https://doi.org/10.1016/j.amc.2005.07.003
13 https://doi.org/10.1016/j.cap.2005.07.004
14 https://doi.org/10.1016/j.compstruct.2005.06.009
15 https://doi.org/10.1016/j.engappai.2004.10.001
16 https://doi.org/10.1016/j.ijmultiphaseflow.2004.12.004
17 https://doi.org/10.1016/j.jcis.2005.04.104
18 https://doi.org/10.1016/j.jcis.2005.09.039
19 https://doi.org/10.1021/ac002800y
20 https://doi.org/10.1046/j.1365-2257.2003.00494.x
21 https://doi.org/10.1088/0960-1317/14/8/007
22 https://doi.org/10.1117/12.472741
23 https://doi.org/10.1126/science.277.5334.1931
24 https://doi.org/10.1145/37402.37406
25 https://doi.org/10.1146/annurev.fluid.36.050802.122124
26 schema:datePublished 2009-05
27 schema:datePublishedReg 2009-05-01
28 schema:description This paper presents a novel method of optimizing particle-suspended microfluidic channels using genetic algorithms (GAs). The GAs can be used to generate an optimal microchannel design by varying its geometrical parameters. A heuristic simulation can be useful for simulating the emergent behaviors of particles resulting from their interaction with a virtual microchannel environment. At the same time, fitness evaluation enables us to direct evolutions towards an optimized microchannel design. Specifically, this technique can be used to demonstrate its feasibility by optimizing one commercialized product for clinical applications such as the microchannel-type imaging flow cytometry of human erythrocytes. The resulting channel design can also be fabricated and then compared to its counterpart. This result implies that this approach can be potentially beneficial for developing a complex microchannel design in a controlled manner.
29 schema:genre research_article
30 schema:inLanguage en
31 schema:isAccessibleForFree false
32 schema:isPartOf N570f7371e38a40c58620008b4e48ef5c
33 N619c965f9b554ed887b2238e1747a61d
34 sg:journal.1295111
35 schema:name Optimal microchannel design using genetic algorithms
36 schema:pagination 1500-1507
37 schema:productId N3fbe14a6ee8444019eb4ac52f3b5380d
38 N5ea50a19707d49338aa4675d021bb67f
39 Nccfb06bde88d4950a8e9691842dcb257
40 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045796623
41 https://doi.org/10.1007/s12206-009-0403-7
42 schema:sdDatePublished 2019-04-11T09:18
43 schema:sdLicense https://scigraph.springernature.com/explorer/license/
44 schema:sdPublisher N69086f215cd5480fa1e8ff018326a434
45 schema:url http://link.springer.com/10.1007%2Fs12206-009-0403-7
46 sgo:license sg:explorer/license/
47 sgo:sdDataset articles
48 rdf:type schema:ScholarlyArticle
49 N163926ec409741da805aeb813ca605d2 rdf:first sg:person.0717552420.20
50 rdf:rest Nc958ea793ec445dd8c0ba5e909a91adc
51 N39077be643f24a60b7f19e2207d190a0 rdf:first sg:person.014751104554.20
52 rdf:rest rdf:nil
53 N3fbe14a6ee8444019eb4ac52f3b5380d schema:name doi
54 schema:value 10.1007/s12206-009-0403-7
55 rdf:type schema:PropertyValue
56 N570f7371e38a40c58620008b4e48ef5c schema:issueNumber 5
57 rdf:type schema:PublicationIssue
58 N5ea50a19707d49338aa4675d021bb67f schema:name readcube_id
59 schema:value da25dda1629f3c47bc9089b405ddc000e78925a79b2ae042c64a123148125012
60 rdf:type schema:PropertyValue
61 N619c965f9b554ed887b2238e1747a61d schema:volumeNumber 23
62 rdf:type schema:PublicationVolume
63 N69086f215cd5480fa1e8ff018326a434 schema:name Springer Nature - SN SciGraph project
64 rdf:type schema:Organization
65 Nc958ea793ec445dd8c0ba5e909a91adc rdf:first sg:person.01160646021.42
66 rdf:rest Nd4c30ff816db4255856d3a40ac828662
67 Nccfb06bde88d4950a8e9691842dcb257 schema:name dimensions_id
68 schema:value pub.1045796623
69 rdf:type schema:PropertyValue
70 Nd070fc6a16564dd7b6773d5aa99346af rdf:first sg:person.01270016442.48
71 rdf:rest N39077be643f24a60b7f19e2207d190a0
72 Nd3a554d0ff0c44cb9b4acee8dc8ae25f rdf:first sg:person.01355261131.57
73 rdf:rest N163926ec409741da805aeb813ca605d2
74 Nd4c30ff816db4255856d3a40ac828662 rdf:first sg:person.01221703242.39
75 rdf:rest Nd070fc6a16564dd7b6773d5aa99346af
76 Ne3336bc2304e4b43bfd100c83f533ff6 schema:name Digital Bio Technology, Inc., Shillim 9-dong Gwanak-gu, 151-742, Seoul, Korea
77 rdf:type schema:Organization
78 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
79 schema:name Information and Computing Sciences
80 rdf:type schema:DefinedTerm
81 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
82 schema:name Artificial Intelligence and Image Processing
83 rdf:type schema:DefinedTerm
84 sg:journal.1295111 schema:issn 1011-8861
85 1226-4865
86 schema:name Journal of Mechanical Science and Technology
87 rdf:type schema:Periodical
88 sg:person.01160646021.42 schema:affiliation Ne3336bc2304e4b43bfd100c83f533ff6
89 schema:familyName Park
90 schema:givenName Junha
91 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01160646021.42
92 rdf:type schema:Person
93 sg:person.01221703242.39 schema:affiliation https://www.grid.ac/institutes/grid.31501.36
94 schema:familyName Yun
95 schema:givenName Hoyoung
96 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01221703242.39
97 rdf:type schema:Person
98 sg:person.01270016442.48 schema:affiliation https://www.grid.ac/institutes/grid.31501.36
99 schema:familyName Min
100 schema:givenName Junggi
101 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01270016442.48
102 rdf:type schema:Person
103 sg:person.01355261131.57 schema:affiliation https://www.grid.ac/institutes/grid.31501.36
104 schema:familyName Bang
105 schema:givenName Hyunwoo
106 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01355261131.57
107 rdf:type schema:Person
108 sg:person.014751104554.20 schema:affiliation https://www.grid.ac/institutes/grid.31501.36
109 schema:familyName Han
110 schema:givenName Dong-Chul
111 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014751104554.20
112 rdf:type schema:Person
113 sg:person.0717552420.20 schema:affiliation https://www.grid.ac/institutes/grid.31501.36
114 schema:familyName Lee
115 schema:givenName Won Gu
116 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0717552420.20
117 rdf:type schema:Person
118 sg:pub.10.1007/bf02982433 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015965330
119 https://doi.org/10.1007/bf02982433
120 rdf:type schema:CreativeWork
121 sg:pub.10.1007/bf02983286 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042608913
122 https://doi.org/10.1007/bf02983286
123 rdf:type schema:CreativeWork
124 sg:pub.10.1007/bf02984012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016718611
125 https://doi.org/10.1007/bf02984012
126 rdf:type schema:CreativeWork
127 sg:pub.10.1007/bf02984389 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031741711
128 https://doi.org/10.1007/bf02984389
129 rdf:type schema:CreativeWork
130 sg:pub.10.1007/s12206-008-0402-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017379087
131 https://doi.org/10.1007/s12206-008-0402-0
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1002/(sici)1097-0320(19990401)35:4<291::aid-cyto1>3.0.co;2-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1045977436
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1016/0303-2647(95)01556-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037092902
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1016/j.advengsoft.2005.03.022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024319483
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1016/j.amc.2005.07.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052541568
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1016/j.cap.2005.07.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039959686
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1016/j.compstruct.2005.06.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031452013
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1016/j.engappai.2004.10.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000291723
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1016/j.ijmultiphaseflow.2004.12.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000420897
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1016/j.jcis.2005.04.104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033407859
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1016/j.jcis.2005.09.039 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021760076
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1021/ac002800y schema:sameAs https://app.dimensions.ai/details/publication/pub.1054989324
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1046/j.1365-2257.2003.00494.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1038371307
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1088/0960-1317/14/8/007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006431529
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1117/12.472741 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026436862
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1126/science.277.5334.1931 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062558088
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1145/37402.37406 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017016808
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1146/annurev.fluid.36.050802.122124 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034529035
166 rdf:type schema:CreativeWork
167 https://www.grid.ac/institutes/grid.31501.36 schema:alternateName Seoul National University
168 schema:name School of Mechanical and Aerospace Engineering and Institute of Advanced Machinery & Design, Seoul National University, Shillim 9-dong Gwanak-gu, 151-742, Seoul, Korea
169 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...