Flow Estimation using Drone Optical Imagery with Non-uniform Flow Modeling in a Controlled Experimental Channel View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-04

AUTHORS

Boosik Kang, Jin Gyeom Kim, Dongsu Kim, Do Hyuk Kang

ABSTRACT

A new methods were presented to estimate streamflow with the aid of low-cost optical, infrared, and microwave imagery in a controlled experimental hydraulic channel. The River Experiment Center in Andong, Korea was used as a test site for calibration and validation. The suggested methodologies uses the remotely sensed channel width and the derived channel cross sections coupled with simple hydraulic models. Two basic models were applied for comparison; 1) the Manning’s equation for uniform flow analysis and 2) an iterative method based on the energy equation that assumes non-uniform flow. The non-uniform condition for the 2nd method is achieved by using a water structure, specifically, a weir, to form a backwater effect. Under the assumption of ideal uniform flow, both methods show similarly reasonable performance, with 14.5% error on average against the in-situ channel flow observations. However, under non-uniform flow, the uniform flow approach, i.e., the 1st method, exhibits overestimated channel flow (62.6% error) compared to the non-uniform analysis method, i.e., the 2nd method (15.8% error on average). More... »

PAGES

1891-1898

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s12205-019-1438-7

DOI

http://dx.doi.org/10.1007/s12205-019-1438-7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1111438344


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0915", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Interdisciplinary Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Dankook University", 
          "id": "https://www.grid.ac/institutes/grid.411982.7", 
          "name": [
            "Dept. of Civil and Environmental Engineering, Dankook University, 16890, Yongin, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kang", 
        "givenName": "Boosik", 
        "id": "sg:person.016164377601.80", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016164377601.80"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Dankook University", 
          "id": "https://www.grid.ac/institutes/grid.411982.7", 
          "name": [
            "Dept. of Civil and Environmental Engineering, Dankook University, 16890, Yongin, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kim", 
        "givenName": "Jin Gyeom", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Dankook University", 
          "id": "https://www.grid.ac/institutes/grid.411982.7", 
          "name": [
            "Dept. of Civil and Environmental Engineering, Dankook University, 16890, Yongin, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kim", 
        "givenName": "Dongsu", 
        "id": "sg:person.07357017713.40", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07357017713.40"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Goddard Space Flight Center", 
          "id": "https://www.grid.ac/institutes/grid.133275.1", 
          "name": [
            "Hydrological Sciences Branch, NASA Goddard Space Flight Center, 20850, Greenbelt, MD, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kang", 
        "givenName": "Do Hyuk", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1002/hyp.10698", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002255347"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/esp.1914", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003047679"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/esp.1914", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003047679"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01431169608948714", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031719895"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/wr010i003p00473", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035731228"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jhydrol.2004.11.022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041049183"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/hyp.10157", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043837815"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/96wr00752", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045836621"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jher.2011.05.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047095648"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2007wr006133", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053280020"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tmech.2015.2408112", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061693505"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.12989/sss.2014.13.6.1065", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064865716"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12205-017-1862-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085404243", 
          "https://doi.org/10.1007/s12205-017-1862-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12205-017-1862-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085404243", 
          "https://doi.org/10.1007/s12205-017-1862-5"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-04", 
    "datePublishedReg": "2019-04-01", 
    "description": "A new methods were presented to estimate streamflow with the aid of low-cost optical, infrared, and microwave imagery in a controlled experimental hydraulic channel. The River Experiment Center in Andong, Korea was used as a test site for calibration and validation. The suggested methodologies uses the remotely sensed channel width and the derived channel cross sections coupled with simple hydraulic models. Two basic models were applied for comparison; 1) the Manning\u2019s equation for uniform flow analysis and 2) an iterative method based on the energy equation that assumes non-uniform flow. The non-uniform condition for the 2nd method is achieved by using a water structure, specifically, a weir, to form a backwater effect. Under the assumption of ideal uniform flow, both methods show similarly reasonable performance, with 14.5% error on average against the in-situ channel flow observations. However, under non-uniform flow, the uniform flow approach, i.e., the 1st method, exhibits overestimated channel flow (62.6% error) compared to the non-uniform analysis method, i.e., the 2nd method (15.8% error on average).", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s12205-019-1438-7", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136365", 
        "issn": [
          "1226-7988", 
          "1976-3808"
        ], 
        "name": "KSCE Journal of Civil Engineering", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "23"
      }
    ], 
    "name": "Flow Estimation using Drone Optical Imagery with Non-uniform Flow Modeling in a Controlled Experimental Channel", 
    "pagination": "1891-1898", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "bc9c98af31b80f047a0edbedb7ffcb99257996bd5284f7a1f095c4f3bde615e4"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s12205-019-1438-7"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1111438344"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s12205-019-1438-7", 
      "https://app.dimensions.ai/details/publication/pub.1111438344"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:05", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000360_0000000360/records_118321_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs12205-019-1438-7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12205-019-1438-7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12205-019-1438-7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12205-019-1438-7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12205-019-1438-7'


 

This table displays all metadata directly associated to this object as RDF triples.

120 TRIPLES      21 PREDICATES      39 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s12205-019-1438-7 schema:about anzsrc-for:09
2 anzsrc-for:0915
3 schema:author Nd773ffb5bec44a71a893fe916f17f31a
4 schema:citation sg:pub.10.1007/s12205-017-1862-5
5 https://doi.org/10.1002/esp.1914
6 https://doi.org/10.1002/hyp.10157
7 https://doi.org/10.1002/hyp.10698
8 https://doi.org/10.1016/j.jher.2011.05.003
9 https://doi.org/10.1016/j.jhydrol.2004.11.022
10 https://doi.org/10.1029/2007wr006133
11 https://doi.org/10.1029/96wr00752
12 https://doi.org/10.1029/wr010i003p00473
13 https://doi.org/10.1080/01431169608948714
14 https://doi.org/10.1109/tmech.2015.2408112
15 https://doi.org/10.12989/sss.2014.13.6.1065
16 schema:datePublished 2019-04
17 schema:datePublishedReg 2019-04-01
18 schema:description A new methods were presented to estimate streamflow with the aid of low-cost optical, infrared, and microwave imagery in a controlled experimental hydraulic channel. The River Experiment Center in Andong, Korea was used as a test site for calibration and validation. The suggested methodologies uses the remotely sensed channel width and the derived channel cross sections coupled with simple hydraulic models. Two basic models were applied for comparison; 1) the Manning’s equation for uniform flow analysis and 2) an iterative method based on the energy equation that assumes non-uniform flow. The non-uniform condition for the 2nd method is achieved by using a water structure, specifically, a weir, to form a backwater effect. Under the assumption of ideal uniform flow, both methods show similarly reasonable performance, with 14.5% error on average against the in-situ channel flow observations. However, under non-uniform flow, the uniform flow approach, i.e., the 1st method, exhibits overestimated channel flow (62.6% error) compared to the non-uniform analysis method, i.e., the 2nd method (15.8% error on average).
19 schema:genre research_article
20 schema:inLanguage en
21 schema:isAccessibleForFree false
22 schema:isPartOf N10b9da10f4524498930f7a60019918cd
23 N46088440c2f64aee96351a75207f0320
24 sg:journal.1136365
25 schema:name Flow Estimation using Drone Optical Imagery with Non-uniform Flow Modeling in a Controlled Experimental Channel
26 schema:pagination 1891-1898
27 schema:productId N53608ecbdd38490d9a9b9eddcf18f146
28 N578fcf1f1d0b47d6a58e0c864127a24a
29 Nc86b8ac1c6c142debbc292f20b37fb46
30 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111438344
31 https://doi.org/10.1007/s12205-019-1438-7
32 schema:sdDatePublished 2019-04-11T12:05
33 schema:sdLicense https://scigraph.springernature.com/explorer/license/
34 schema:sdPublisher N4a8b197364f948e8aca1e151a1ff907d
35 schema:url https://link.springer.com/10.1007%2Fs12205-019-1438-7
36 sgo:license sg:explorer/license/
37 sgo:sdDataset articles
38 rdf:type schema:ScholarlyArticle
39 N10b9da10f4524498930f7a60019918cd schema:volumeNumber 23
40 rdf:type schema:PublicationVolume
41 N2a4e9d9cc0204c2292aa7ffc1ef50c99 rdf:first N434996c9766d480887ab05178e2f6749
42 rdf:rest Nbda7a6faf0244060a944f980232a421a
43 N434996c9766d480887ab05178e2f6749 schema:affiliation https://www.grid.ac/institutes/grid.411982.7
44 schema:familyName Kim
45 schema:givenName Jin Gyeom
46 rdf:type schema:Person
47 N46088440c2f64aee96351a75207f0320 schema:issueNumber 4
48 rdf:type schema:PublicationIssue
49 N4a8b197364f948e8aca1e151a1ff907d schema:name Springer Nature - SN SciGraph project
50 rdf:type schema:Organization
51 N53608ecbdd38490d9a9b9eddcf18f146 schema:name readcube_id
52 schema:value bc9c98af31b80f047a0edbedb7ffcb99257996bd5284f7a1f095c4f3bde615e4
53 rdf:type schema:PropertyValue
54 N578fcf1f1d0b47d6a58e0c864127a24a schema:name doi
55 schema:value 10.1007/s12205-019-1438-7
56 rdf:type schema:PropertyValue
57 N82f95051677e4b1896e61962dadc909f rdf:first Nb430d9fc325b4133be655d9879802291
58 rdf:rest rdf:nil
59 Nb430d9fc325b4133be655d9879802291 schema:affiliation https://www.grid.ac/institutes/grid.133275.1
60 schema:familyName Kang
61 schema:givenName Do Hyuk
62 rdf:type schema:Person
63 Nbda7a6faf0244060a944f980232a421a rdf:first sg:person.07357017713.40
64 rdf:rest N82f95051677e4b1896e61962dadc909f
65 Nc86b8ac1c6c142debbc292f20b37fb46 schema:name dimensions_id
66 schema:value pub.1111438344
67 rdf:type schema:PropertyValue
68 Nd773ffb5bec44a71a893fe916f17f31a rdf:first sg:person.016164377601.80
69 rdf:rest N2a4e9d9cc0204c2292aa7ffc1ef50c99
70 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
71 schema:name Engineering
72 rdf:type schema:DefinedTerm
73 anzsrc-for:0915 schema:inDefinedTermSet anzsrc-for:
74 schema:name Interdisciplinary Engineering
75 rdf:type schema:DefinedTerm
76 sg:journal.1136365 schema:issn 1226-7988
77 1976-3808
78 schema:name KSCE Journal of Civil Engineering
79 rdf:type schema:Periodical
80 sg:person.016164377601.80 schema:affiliation https://www.grid.ac/institutes/grid.411982.7
81 schema:familyName Kang
82 schema:givenName Boosik
83 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016164377601.80
84 rdf:type schema:Person
85 sg:person.07357017713.40 schema:affiliation https://www.grid.ac/institutes/grid.411982.7
86 schema:familyName Kim
87 schema:givenName Dongsu
88 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07357017713.40
89 rdf:type schema:Person
90 sg:pub.10.1007/s12205-017-1862-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085404243
91 https://doi.org/10.1007/s12205-017-1862-5
92 rdf:type schema:CreativeWork
93 https://doi.org/10.1002/esp.1914 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003047679
94 rdf:type schema:CreativeWork
95 https://doi.org/10.1002/hyp.10157 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043837815
96 rdf:type schema:CreativeWork
97 https://doi.org/10.1002/hyp.10698 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002255347
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1016/j.jher.2011.05.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047095648
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1016/j.jhydrol.2004.11.022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041049183
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1029/2007wr006133 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053280020
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1029/96wr00752 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045836621
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1029/wr010i003p00473 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035731228
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1080/01431169608948714 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031719895
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1109/tmech.2015.2408112 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061693505
112 rdf:type schema:CreativeWork
113 https://doi.org/10.12989/sss.2014.13.6.1065 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064865716
114 rdf:type schema:CreativeWork
115 https://www.grid.ac/institutes/grid.133275.1 schema:alternateName Goddard Space Flight Center
116 schema:name Hydrological Sciences Branch, NASA Goddard Space Flight Center, 20850, Greenbelt, MD, USA
117 rdf:type schema:Organization
118 https://www.grid.ac/institutes/grid.411982.7 schema:alternateName Dankook University
119 schema:name Dept. of Civil and Environmental Engineering, Dankook University, 16890, Yongin, Korea
120 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...