Detecting Taxi Travel Patterns using GPS Trajectory Data: A Case Study of Beijing View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-04

AUTHORS

Hui Zhang, Baiying Shi, Chengxiang Zhuge, Wei Wang

ABSTRACT

GPS trajectory is a valuable source to understand the operational status of taxicabs and identify the traffic demand and congestions. This study attempts to use 24-hour taxi trajectory data to investigate the attributes of taxicabs such as the distance of occupied distance, number of active taxicabs in different hours, average trip speed in different hour, coverage area of a taxicab, average radius of a taxicab, occupied rate and service times. The results show that the highest speed of taxicabs occur in the 3:00 am when there is the smallest number of active taxicabs running on the road. Moreover, the average occupied rate is 0.59 and the average service times are 19.8 in a day. Finally, a latent class analysis model is used to make the segment of taxicabs by their attributes. Four operational patterns have been found including ‘downtown preference type’, ‘long-distance preference type’, ‘suburbs preference type’ and ‘free preference type’. This study can shed light on understanding the operational status of taxicabs and gives suggestions for operators and passengers for better managing and using taxicabs. More... »

PAGES

1797-1805

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s12205-019-0580-6

DOI

http://dx.doi.org/10.1007/s12205-019-0580-6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1111390149


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1402", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Applied Economics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/14", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Economics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Shandong Jianzhu University", 
          "id": "https://www.grid.ac/institutes/grid.440623.7", 
          "name": [
            "School of Transportation Engineering, Shandong Jianzhu University, 250101, Jinan, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Hui", 
        "id": "sg:person.014620500450.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014620500450.34"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Shandong Jianzhu University", 
          "id": "https://www.grid.ac/institutes/grid.440623.7", 
          "name": [
            "School of Transportation Engineering, Shandong Jianzhu University, 250101, Jinan, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shi", 
        "givenName": "Baiying", 
        "id": "sg:person.012022247006.94", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012022247006.94"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Imperial College London", 
          "id": "https://www.grid.ac/institutes/grid.7445.2", 
          "name": [
            "Centre for Environmental Policy Faculty of Natural Sciences, Imperial College London, SW7 1NA, London, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhuge", 
        "givenName": "Chengxiang", 
        "id": "sg:person.07603463053.14", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07603463053.14"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ocean University of China", 
          "id": "https://www.grid.ac/institutes/grid.4422.0", 
          "name": [
            "School of Economics, Ocean University of China, 266100, Qingdao, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Wei", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.apgeog.2015.02.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000870881"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10115-016-0948-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002433436", 
          "https://doi.org/10.1007/s10115-016-0948-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/su8070674", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002574187"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0147299", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002743253"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0147299", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002743253"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0147299", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002743253"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/gean.12087", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003752673"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/atr.1307", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003966587"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jairtraman.2016.04.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008891451"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/13658816.2015.1100731", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010283097"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1140/epjds/s13688-016-0092-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010291947", 
          "https://doi.org/10.1140/epjds/s13688-016-0092-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1140/epjds/s13688-016-0092-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010291947", 
          "https://doi.org/10.1140/epjds/s13688-016-0092-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1155/2014/708482", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011503072"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.compenvurbsys.2016.08.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014879016"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/s141120843", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015195231"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/2970819", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015325842"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11707-015-0525-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023178628", 
          "https://doi.org/10.1007/s11707-015-0525-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tra.2013.07.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024341418"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.apgeog.2016.03.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025104466"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.apgeog.2016.03.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025104466"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.apgeog.2016.03.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025104466"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.apgeog.2016.03.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025104466"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physa.2015.06.032", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028177644"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/2644828", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028816038"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.im.2016.04.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037994090"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.im.2016.04.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037994090"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.im.2016.04.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037994090"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.im.2016.04.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037994090"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.trd.2016.04.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045389182"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/19439962.2013.799624", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052136827"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tac.1974.1100705", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061471419"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.7307/ptt.v27i6.1641", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1073685123"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.trc.2017.03.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084111430"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.trc.2017.03.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084111430"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.trc.2017.03.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084111430"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physa.2017.04.182", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085188630"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/info8020067", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1086071201"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11704-011-1192-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1086197620", 
          "https://doi.org/10.1007/s11704-011-1192-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0181657", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090774137"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0183574", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091541415"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1155/2018/6197549", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100164067"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physa.2018.02.064", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101201054"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.2517-6161.1986.tb01408.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1110458505"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.2517-6161.1986.tb01408.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1110458505"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-04", 
    "datePublishedReg": "2019-04-01", 
    "description": "GPS trajectory is a valuable source to understand the operational status of taxicabs and identify the traffic demand and congestions. This study attempts to use 24-hour taxi trajectory data to investigate the attributes of taxicabs such as the distance of occupied distance, number of active taxicabs in different hours, average trip speed in different hour, coverage area of a taxicab, average radius of a taxicab, occupied rate and service times. The results show that the highest speed of taxicabs occur in the 3:00 am when there is the smallest number of active taxicabs running on the road. Moreover, the average occupied rate is 0.59 and the average service times are 19.8 in a day. Finally, a latent class analysis model is used to make the segment of taxicabs by their attributes. Four operational patterns have been found including \u2018downtown preference type\u2019, \u2018long-distance preference type\u2019, \u2018suburbs preference type\u2019 and \u2018free preference type\u2019. This study can shed light on understanding the operational status of taxicabs and gives suggestions for operators and passengers for better managing and using taxicabs.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s12205-019-0580-6", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136365", 
        "issn": [
          "1226-7988", 
          "1976-3808"
        ], 
        "name": "KSCE Journal of Civil Engineering", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "23"
      }
    ], 
    "name": "Detecting Taxi Travel Patterns using GPS Trajectory Data: A Case Study of Beijing", 
    "pagination": "1797-1805", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "b2b8ca7e587b24c65cdeda6211058f0628a2c0f9bef59f97384820a42bd3efb7"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s12205-019-0580-6"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1111390149"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s12205-019-0580-6", 
      "https://app.dimensions.ai/details/publication/pub.1111390149"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:05", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000360_0000000360/records_118321_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs12205-019-0580-6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12205-019-0580-6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12205-019-0580-6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12205-019-0580-6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12205-019-0580-6'


 

This table displays all metadata directly associated to this object as RDF triples.

187 TRIPLES      21 PREDICATES      59 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s12205-019-0580-6 schema:about anzsrc-for:14
2 anzsrc-for:1402
3 schema:author N23921bcbdaba47d6a9be3c1fc54a153c
4 schema:citation sg:pub.10.1007/s10115-016-0948-6
5 sg:pub.10.1007/s11704-011-1192-6
6 sg:pub.10.1007/s11707-015-0525-4
7 sg:pub.10.1140/epjds/s13688-016-0092-2
8 https://doi.org/10.1002/atr.1307
9 https://doi.org/10.1016/j.apgeog.2015.02.011
10 https://doi.org/10.1016/j.apgeog.2016.03.001
11 https://doi.org/10.1016/j.compenvurbsys.2016.08.002
12 https://doi.org/10.1016/j.im.2016.04.004
13 https://doi.org/10.1016/j.jairtraman.2016.04.010
14 https://doi.org/10.1016/j.physa.2015.06.032
15 https://doi.org/10.1016/j.physa.2017.04.182
16 https://doi.org/10.1016/j.physa.2018.02.064
17 https://doi.org/10.1016/j.tra.2013.07.008
18 https://doi.org/10.1016/j.trc.2017.03.013
19 https://doi.org/10.1016/j.trd.2016.04.011
20 https://doi.org/10.1080/13658816.2015.1100731
21 https://doi.org/10.1080/19439962.2013.799624
22 https://doi.org/10.1109/tac.1974.1100705
23 https://doi.org/10.1111/gean.12087
24 https://doi.org/10.1111/j.2517-6161.1986.tb01408.x
25 https://doi.org/10.1145/2644828
26 https://doi.org/10.1145/2970819
27 https://doi.org/10.1155/2014/708482
28 https://doi.org/10.1155/2018/6197549
29 https://doi.org/10.1371/journal.pone.0147299
30 https://doi.org/10.1371/journal.pone.0181657
31 https://doi.org/10.1371/journal.pone.0183574
32 https://doi.org/10.3390/info8020067
33 https://doi.org/10.3390/s141120843
34 https://doi.org/10.3390/su8070674
35 https://doi.org/10.7307/ptt.v27i6.1641
36 schema:datePublished 2019-04
37 schema:datePublishedReg 2019-04-01
38 schema:description GPS trajectory is a valuable source to understand the operational status of taxicabs and identify the traffic demand and congestions. This study attempts to use 24-hour taxi trajectory data to investigate the attributes of taxicabs such as the distance of occupied distance, number of active taxicabs in different hours, average trip speed in different hour, coverage area of a taxicab, average radius of a taxicab, occupied rate and service times. The results show that the highest speed of taxicabs occur in the 3:00 am when there is the smallest number of active taxicabs running on the road. Moreover, the average occupied rate is 0.59 and the average service times are 19.8 in a day. Finally, a latent class analysis model is used to make the segment of taxicabs by their attributes. Four operational patterns have been found including ‘downtown preference type’, ‘long-distance preference type’, ‘suburbs preference type’ and ‘free preference type’. This study can shed light on understanding the operational status of taxicabs and gives suggestions for operators and passengers for better managing and using taxicabs.
39 schema:genre research_article
40 schema:inLanguage en
41 schema:isAccessibleForFree false
42 schema:isPartOf N550e5d723ca7484987ad7fd7b43696d3
43 Na9f16011f5f04545b989d5dff5f0fd80
44 sg:journal.1136365
45 schema:name Detecting Taxi Travel Patterns using GPS Trajectory Data: A Case Study of Beijing
46 schema:pagination 1797-1805
47 schema:productId N5bddfabe1dbe48c48a3c8ff5a24f333b
48 N6309ef06901c4cc1b8ccf2296224f784
49 N78c9100a681545a1885f90a5151c5ca5
50 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111390149
51 https://doi.org/10.1007/s12205-019-0580-6
52 schema:sdDatePublished 2019-04-11T12:05
53 schema:sdLicense https://scigraph.springernature.com/explorer/license/
54 schema:sdPublisher N49ad95d3bd384e698bb63d4f02844606
55 schema:url https://link.springer.com/10.1007%2Fs12205-019-0580-6
56 sgo:license sg:explorer/license/
57 sgo:sdDataset articles
58 rdf:type schema:ScholarlyArticle
59 N011e82ecc43f4f11a59a4419fcf8049d rdf:first N06413fe7b1ab415fa2c5a594df9c2e2b
60 rdf:rest rdf:nil
61 N06413fe7b1ab415fa2c5a594df9c2e2b schema:affiliation https://www.grid.ac/institutes/grid.4422.0
62 schema:familyName Wang
63 schema:givenName Wei
64 rdf:type schema:Person
65 N0d63b7eb2ba24dec8e1a177529322935 rdf:first sg:person.07603463053.14
66 rdf:rest N011e82ecc43f4f11a59a4419fcf8049d
67 N23921bcbdaba47d6a9be3c1fc54a153c rdf:first sg:person.014620500450.34
68 rdf:rest Nd402a5cd0fd740de824bf4af6c1cca4c
69 N49ad95d3bd384e698bb63d4f02844606 schema:name Springer Nature - SN SciGraph project
70 rdf:type schema:Organization
71 N550e5d723ca7484987ad7fd7b43696d3 schema:issueNumber 4
72 rdf:type schema:PublicationIssue
73 N5bddfabe1dbe48c48a3c8ff5a24f333b schema:name doi
74 schema:value 10.1007/s12205-019-0580-6
75 rdf:type schema:PropertyValue
76 N6309ef06901c4cc1b8ccf2296224f784 schema:name readcube_id
77 schema:value b2b8ca7e587b24c65cdeda6211058f0628a2c0f9bef59f97384820a42bd3efb7
78 rdf:type schema:PropertyValue
79 N78c9100a681545a1885f90a5151c5ca5 schema:name dimensions_id
80 schema:value pub.1111390149
81 rdf:type schema:PropertyValue
82 Na9f16011f5f04545b989d5dff5f0fd80 schema:volumeNumber 23
83 rdf:type schema:PublicationVolume
84 Nd402a5cd0fd740de824bf4af6c1cca4c rdf:first sg:person.012022247006.94
85 rdf:rest N0d63b7eb2ba24dec8e1a177529322935
86 anzsrc-for:14 schema:inDefinedTermSet anzsrc-for:
87 schema:name Economics
88 rdf:type schema:DefinedTerm
89 anzsrc-for:1402 schema:inDefinedTermSet anzsrc-for:
90 schema:name Applied Economics
91 rdf:type schema:DefinedTerm
92 sg:journal.1136365 schema:issn 1226-7988
93 1976-3808
94 schema:name KSCE Journal of Civil Engineering
95 rdf:type schema:Periodical
96 sg:person.012022247006.94 schema:affiliation https://www.grid.ac/institutes/grid.440623.7
97 schema:familyName Shi
98 schema:givenName Baiying
99 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012022247006.94
100 rdf:type schema:Person
101 sg:person.014620500450.34 schema:affiliation https://www.grid.ac/institutes/grid.440623.7
102 schema:familyName Zhang
103 schema:givenName Hui
104 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014620500450.34
105 rdf:type schema:Person
106 sg:person.07603463053.14 schema:affiliation https://www.grid.ac/institutes/grid.7445.2
107 schema:familyName Zhuge
108 schema:givenName Chengxiang
109 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07603463053.14
110 rdf:type schema:Person
111 sg:pub.10.1007/s10115-016-0948-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002433436
112 https://doi.org/10.1007/s10115-016-0948-6
113 rdf:type schema:CreativeWork
114 sg:pub.10.1007/s11704-011-1192-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086197620
115 https://doi.org/10.1007/s11704-011-1192-6
116 rdf:type schema:CreativeWork
117 sg:pub.10.1007/s11707-015-0525-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023178628
118 https://doi.org/10.1007/s11707-015-0525-4
119 rdf:type schema:CreativeWork
120 sg:pub.10.1140/epjds/s13688-016-0092-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010291947
121 https://doi.org/10.1140/epjds/s13688-016-0092-2
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1002/atr.1307 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003966587
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1016/j.apgeog.2015.02.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000870881
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1016/j.apgeog.2016.03.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025104466
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1016/j.compenvurbsys.2016.08.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014879016
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1016/j.im.2016.04.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037994090
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1016/j.jairtraman.2016.04.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008891451
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1016/j.physa.2015.06.032 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028177644
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1016/j.physa.2017.04.182 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085188630
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1016/j.physa.2018.02.064 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101201054
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1016/j.tra.2013.07.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024341418
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1016/j.trc.2017.03.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084111430
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1016/j.trd.2016.04.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045389182
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1080/13658816.2015.1100731 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010283097
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1080/19439962.2013.799624 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052136827
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1109/tac.1974.1100705 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061471419
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1111/gean.12087 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003752673
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1111/j.2517-6161.1986.tb01408.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1110458505
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1145/2644828 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028816038
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1145/2970819 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015325842
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1155/2014/708482 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011503072
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1155/2018/6197549 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100164067
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1371/journal.pone.0147299 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002743253
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1371/journal.pone.0181657 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090774137
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1371/journal.pone.0183574 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091541415
170 rdf:type schema:CreativeWork
171 https://doi.org/10.3390/info8020067 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086071201
172 rdf:type schema:CreativeWork
173 https://doi.org/10.3390/s141120843 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015195231
174 rdf:type schema:CreativeWork
175 https://doi.org/10.3390/su8070674 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002574187
176 rdf:type schema:CreativeWork
177 https://doi.org/10.7307/ptt.v27i6.1641 schema:sameAs https://app.dimensions.ai/details/publication/pub.1073685123
178 rdf:type schema:CreativeWork
179 https://www.grid.ac/institutes/grid.440623.7 schema:alternateName Shandong Jianzhu University
180 schema:name School of Transportation Engineering, Shandong Jianzhu University, 250101, Jinan, China
181 rdf:type schema:Organization
182 https://www.grid.ac/institutes/grid.4422.0 schema:alternateName Ocean University of China
183 schema:name School of Economics, Ocean University of China, 266100, Qingdao, China
184 rdf:type schema:Organization
185 https://www.grid.ac/institutes/grid.7445.2 schema:alternateName Imperial College London
186 schema:name Centre for Environmental Policy Faculty of Natural Sciences, Imperial College London, SW7 1NA, London, UK
187 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...