Accurate backbone curves for large-amplitude vibrations of imperfect rectangular plate with viscous damping View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2015-07

AUTHORS

He Huang, David Hui

ABSTRACT

This paper deals with the solution of modified-Duffing ordinary differential equation for large-amplitude vibrations of imperfect rectangular plate with viscous damping. Lindstedt's perturbation technique and Runge-Kutta method are applied. The results for both methods are presented and compared for a validity check. It is proved that Lindstedt’s perturbation technique only works accurately for a small range of vibration amplitude. For a structure with a sufficiently large geometric imperfection, the well-known softenspring to harden-spring transforming backbone curve is confirmed and better developed. Although the softening to hardening behavior occurs twice in one backbone curve, the turning points share the same vibration frequency. Yet the amplitude for turning points varies due to the existence of imperfection. Moreover, the effect of damping ratio on vibration mode and vibration amplitude is studied. The usual nonlinear vibration tends to behave more linearly under the effect of large damping. More... »

PAGES

1438-1444

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s12205-015-0114-9

DOI

http://dx.doi.org/10.1007/s12205-015-0114-9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1024570157


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of New Orleans", 
          "id": "https://www.grid.ac/institutes/grid.266835.c", 
          "name": [
            "Dept. of Mechanical Engineering, University of New Orleans, 70148, New Orleans, LA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Huang", 
        "givenName": "He", 
        "id": "sg:person.015714332537.91", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015714332537.91"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of New Orleans", 
          "id": "https://www.grid.ac/institutes/grid.266835.c", 
          "name": [
            "Dept. of Mechanical Engineering, University of New Orleans, 70148, New Orleans, LA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hui", 
        "givenName": "David", 
        "id": "sg:person.0772525224.92", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0772525224.92"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/0022-460x(83)90899-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002268575"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-460x(83)90899-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002268575"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jsv.2007.11.036", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005201604"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tws.2004.03.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007350162"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jsv.2010.07.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007642031"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0020-7403(85)90030-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011706838"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0020-7403(85)90030-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011706838"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jsv.2009.01.037", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028734045"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/zamm.19760560905", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031217885"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2514/3.8317", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034844802"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijnonlinmec.2008.05.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044180724"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.finel.2004.12.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046471977"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tws.2009.12.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052017392"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11012-013-9802-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052107807", 
          "https://doi.org/10.1007/s11012-013-9802-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1115/1.2930509", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062098994"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1115/1.3167582", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062105169"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1115/1.3167629", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062105216"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2015-07", 
    "datePublishedReg": "2015-07-01", 
    "description": "This paper deals with the solution of modified-Duffing ordinary differential equation for large-amplitude vibrations of imperfect rectangular plate with viscous damping. Lindstedt's perturbation technique and Runge-Kutta method are applied. The results for both methods are presented and compared for a validity check. It is proved that Lindstedt\u2019s perturbation technique only works accurately for a small range of vibration amplitude. For a structure with a sufficiently large geometric imperfection, the well-known softenspring to harden-spring transforming backbone curve is confirmed and better developed. Although the softening to hardening behavior occurs twice in one backbone curve, the turning points share the same vibration frequency. Yet the amplitude for turning points varies due to the existence of imperfection. Moreover, the effect of damping ratio on vibration mode and vibration amplitude is studied. The usual nonlinear vibration tends to behave more linearly under the effect of large damping.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s12205-015-0114-9", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136365", 
        "issn": [
          "1226-7988", 
          "1976-3808"
        ], 
        "name": "KSCE Journal of Civil Engineering", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "19"
      }
    ], 
    "name": "Accurate backbone curves for large-amplitude vibrations of imperfect rectangular plate with viscous damping", 
    "pagination": "1438-1444", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "750d7294bab7fd43c9d9c49fc9ce6b73e8a1faf5feb1607e6a753a2e6da82677"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s12205-015-0114-9"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1024570157"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s12205-015-0114-9", 
      "https://app.dimensions.ai/details/publication/pub.1024570157"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T02:07", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8700_00000522.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs12205-015-0114-9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12205-015-0114-9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12205-015-0114-9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12205-015-0114-9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12205-015-0114-9'


 

This table displays all metadata directly associated to this object as RDF triples.

114 TRIPLES      21 PREDICATES      42 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s12205-015-0114-9 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author Ncf175646c38e4340a75f65886c70ccbb
4 schema:citation sg:pub.10.1007/s11012-013-9802-z
5 https://doi.org/10.1002/zamm.19760560905
6 https://doi.org/10.1016/0020-7403(85)90030-x
7 https://doi.org/10.1016/0022-460x(83)90899-4
8 https://doi.org/10.1016/j.finel.2004.12.002
9 https://doi.org/10.1016/j.ijnonlinmec.2008.05.007
10 https://doi.org/10.1016/j.jsv.2007.11.036
11 https://doi.org/10.1016/j.jsv.2009.01.037
12 https://doi.org/10.1016/j.jsv.2010.07.005
13 https://doi.org/10.1016/j.tws.2004.03.010
14 https://doi.org/10.1016/j.tws.2009.12.001
15 https://doi.org/10.1115/1.2930509
16 https://doi.org/10.1115/1.3167582
17 https://doi.org/10.1115/1.3167629
18 https://doi.org/10.2514/3.8317
19 schema:datePublished 2015-07
20 schema:datePublishedReg 2015-07-01
21 schema:description This paper deals with the solution of modified-Duffing ordinary differential equation for large-amplitude vibrations of imperfect rectangular plate with viscous damping. Lindstedt's perturbation technique and Runge-Kutta method are applied. The results for both methods are presented and compared for a validity check. It is proved that Lindstedt’s perturbation technique only works accurately for a small range of vibration amplitude. For a structure with a sufficiently large geometric imperfection, the well-known softenspring to harden-spring transforming backbone curve is confirmed and better developed. Although the softening to hardening behavior occurs twice in one backbone curve, the turning points share the same vibration frequency. Yet the amplitude for turning points varies due to the existence of imperfection. Moreover, the effect of damping ratio on vibration mode and vibration amplitude is studied. The usual nonlinear vibration tends to behave more linearly under the effect of large damping.
22 schema:genre research_article
23 schema:inLanguage en
24 schema:isAccessibleForFree false
25 schema:isPartOf N9f3088c3ec16489d95050ce580cbad75
26 Nce8354f168ea47119831e329c7813cd6
27 sg:journal.1136365
28 schema:name Accurate backbone curves for large-amplitude vibrations of imperfect rectangular plate with viscous damping
29 schema:pagination 1438-1444
30 schema:productId N16aa436db0be42afa7b8b807e72162c2
31 Nb1a06452a4014a508269874bd683fcb1
32 Ne1c80f00e0de416193bdb21922f1afe5
33 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024570157
34 https://doi.org/10.1007/s12205-015-0114-9
35 schema:sdDatePublished 2019-04-11T02:07
36 schema:sdLicense https://scigraph.springernature.com/explorer/license/
37 schema:sdPublisher N902ec9b0cbe449d49f1fbb85d6d9db5e
38 schema:url http://link.springer.com/10.1007%2Fs12205-015-0114-9
39 sgo:license sg:explorer/license/
40 sgo:sdDataset articles
41 rdf:type schema:ScholarlyArticle
42 N16aa436db0be42afa7b8b807e72162c2 schema:name dimensions_id
43 schema:value pub.1024570157
44 rdf:type schema:PropertyValue
45 N492ff08186ae474bb1faf08665fb1b92 rdf:first sg:person.0772525224.92
46 rdf:rest rdf:nil
47 N902ec9b0cbe449d49f1fbb85d6d9db5e schema:name Springer Nature - SN SciGraph project
48 rdf:type schema:Organization
49 N9f3088c3ec16489d95050ce580cbad75 schema:volumeNumber 19
50 rdf:type schema:PublicationVolume
51 Nb1a06452a4014a508269874bd683fcb1 schema:name readcube_id
52 schema:value 750d7294bab7fd43c9d9c49fc9ce6b73e8a1faf5feb1607e6a753a2e6da82677
53 rdf:type schema:PropertyValue
54 Nce8354f168ea47119831e329c7813cd6 schema:issueNumber 5
55 rdf:type schema:PublicationIssue
56 Ncf175646c38e4340a75f65886c70ccbb rdf:first sg:person.015714332537.91
57 rdf:rest N492ff08186ae474bb1faf08665fb1b92
58 Ne1c80f00e0de416193bdb21922f1afe5 schema:name doi
59 schema:value 10.1007/s12205-015-0114-9
60 rdf:type schema:PropertyValue
61 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
62 schema:name Mathematical Sciences
63 rdf:type schema:DefinedTerm
64 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
65 schema:name Pure Mathematics
66 rdf:type schema:DefinedTerm
67 sg:journal.1136365 schema:issn 1226-7988
68 1976-3808
69 schema:name KSCE Journal of Civil Engineering
70 rdf:type schema:Periodical
71 sg:person.015714332537.91 schema:affiliation https://www.grid.ac/institutes/grid.266835.c
72 schema:familyName Huang
73 schema:givenName He
74 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015714332537.91
75 rdf:type schema:Person
76 sg:person.0772525224.92 schema:affiliation https://www.grid.ac/institutes/grid.266835.c
77 schema:familyName Hui
78 schema:givenName David
79 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0772525224.92
80 rdf:type schema:Person
81 sg:pub.10.1007/s11012-013-9802-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1052107807
82 https://doi.org/10.1007/s11012-013-9802-z
83 rdf:type schema:CreativeWork
84 https://doi.org/10.1002/zamm.19760560905 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031217885
85 rdf:type schema:CreativeWork
86 https://doi.org/10.1016/0020-7403(85)90030-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1011706838
87 rdf:type schema:CreativeWork
88 https://doi.org/10.1016/0022-460x(83)90899-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002268575
89 rdf:type schema:CreativeWork
90 https://doi.org/10.1016/j.finel.2004.12.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046471977
91 rdf:type schema:CreativeWork
92 https://doi.org/10.1016/j.ijnonlinmec.2008.05.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044180724
93 rdf:type schema:CreativeWork
94 https://doi.org/10.1016/j.jsv.2007.11.036 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005201604
95 rdf:type schema:CreativeWork
96 https://doi.org/10.1016/j.jsv.2009.01.037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028734045
97 rdf:type schema:CreativeWork
98 https://doi.org/10.1016/j.jsv.2010.07.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007642031
99 rdf:type schema:CreativeWork
100 https://doi.org/10.1016/j.tws.2004.03.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007350162
101 rdf:type schema:CreativeWork
102 https://doi.org/10.1016/j.tws.2009.12.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052017392
103 rdf:type schema:CreativeWork
104 https://doi.org/10.1115/1.2930509 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062098994
105 rdf:type schema:CreativeWork
106 https://doi.org/10.1115/1.3167582 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062105169
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1115/1.3167629 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062105216
109 rdf:type schema:CreativeWork
110 https://doi.org/10.2514/3.8317 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034844802
111 rdf:type schema:CreativeWork
112 https://www.grid.ac/institutes/grid.266835.c schema:alternateName University of New Orleans
113 schema:name Dept. of Mechanical Engineering, University of New Orleans, 70148, New Orleans, LA, USA
114 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...