Prediction of transverse dispersion coefficient using vertical profile of secondary flow in meandering channels View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2008-11

AUTHORS

Kyong Oh Baek, Il Won Seo

ABSTRACT

When the concentration data are not available, the transverse dispersion coefficient should be predicted using the basic hydraulic parameters to analyze mixing characteristics. In meandering channels, where the secondary flow plays an important role in the increase of transverse mixing, the transverse dispersion coefficient must be predicted accounting for the vertical variation of the transverse velocity. In this study, based on the vertical distribution equation for the transverse velocity, the theoretical formula for the transverse dispersion coefficient is newly developed. The merits of the theoretical formula on the transverse dispersion coefficient derived in this study are that it has the finite combination of elementary functions so that the transverse dispersion coefficient can be easily obtained compared with other theoretical methods, and that it can take into consideration the proper shear effect of the secondary flow. To verify the theoretical prediction of the transverse dispersion coefficient, both flow and tracer experiments are conducted in the meandering laboratory channel. The predicted transverse dispersion coefficient from the newly proposed equation shows better agreement with the observed transverse dispersion coefficient than those from other exiting equations. More... »

PAGES

417-426

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s12205-008-0417-1

DOI

http://dx.doi.org/10.1007/s12205-008-0417-1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1010858456


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0915", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Interdisciplinary Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Gyeonggi Research Institute", 
          "id": "https://www.grid.ac/institutes/grid.496114.f", 
          "name": [
            "Center for Paldang Watershed Research, Gyeonggi Research Institute, 440-290, Suwon, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Baek", 
        "givenName": "Kyong Oh", 
        "id": "sg:person.014367110255.33", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014367110255.33"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Seoul National University", 
          "id": "https://www.grid.ac/institutes/grid.31501.36", 
          "name": [
            "Dept. of Civil Engineering, Seoul National Univ., 152-742, Seoul, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Seo", 
        "givenName": "Il Won", 
        "id": "sg:person.07611237707.45", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07611237707.45"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1080/00221687709499640", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013379867"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1098/rspl.1876.0004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021652605"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/wr012i004p00695", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034543801"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00221689809498376", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041192470"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/wr005i002p00496", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045600007"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0022112059000374", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053837228"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0022112059000374", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053837228"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0022112086002707", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053901117"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0022112098002869", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054085312"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1061/(asce)0733-9429(1998)124:1(25)", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057590929"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1061/(asce)0733-9429(2003)129:2(129)", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057591938"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1061/(asce)0733-9429(2006)132:10(1021)", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057592427"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1061/(asce)0733-9429(2008)134:2(196)", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057592850"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2008-11", 
    "datePublishedReg": "2008-11-01", 
    "description": "When the concentration data are not available, the transverse dispersion coefficient should be predicted using the basic hydraulic parameters to analyze mixing characteristics. In meandering channels, where the secondary flow plays an important role in the increase of transverse mixing, the transverse dispersion coefficient must be predicted accounting for the vertical variation of the transverse velocity. In this study, based on the vertical distribution equation for the transverse velocity, the theoretical formula for the transverse dispersion coefficient is newly developed. The merits of the theoretical formula on the transverse dispersion coefficient derived in this study are that it has the finite combination of elementary functions so that the transverse dispersion coefficient can be easily obtained compared with other theoretical methods, and that it can take into consideration the proper shear effect of the secondary flow. To verify the theoretical prediction of the transverse dispersion coefficient, both flow and tracer experiments are conducted in the meandering laboratory channel. The predicted transverse dispersion coefficient from the newly proposed equation shows better agreement with the observed transverse dispersion coefficient than those from other exiting equations.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s12205-008-0417-1", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136365", 
        "issn": [
          "1226-7988", 
          "1976-3808"
        ], 
        "name": "KSCE Journal of Civil Engineering", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "12"
      }
    ], 
    "name": "Prediction of transverse dispersion coefficient using vertical profile of secondary flow in meandering channels", 
    "pagination": "417-426", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "33bb8ade5768e3c9b7c91d28d5bbd71a6d334e2fa8a570a458cd9d3472598751"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s12205-008-0417-1"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1010858456"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s12205-008-0417-1", 
      "https://app.dimensions.ai/details/publication/pub.1010858456"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T16:44", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8669_00000520.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs12205-008-0417-1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12205-008-0417-1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12205-008-0417-1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12205-008-0417-1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12205-008-0417-1'


 

This table displays all metadata directly associated to this object as RDF triples.

107 TRIPLES      21 PREDICATES      39 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s12205-008-0417-1 schema:about anzsrc-for:09
2 anzsrc-for:0915
3 schema:author N9422e408ede7414eaab7b52978df8c48
4 schema:citation https://doi.org/10.1017/s0022112059000374
5 https://doi.org/10.1017/s0022112086002707
6 https://doi.org/10.1017/s0022112098002869
7 https://doi.org/10.1029/wr005i002p00496
8 https://doi.org/10.1029/wr012i004p00695
9 https://doi.org/10.1061/(asce)0733-9429(1998)124:1(25)
10 https://doi.org/10.1061/(asce)0733-9429(2003)129:2(129)
11 https://doi.org/10.1061/(asce)0733-9429(2006)132:10(1021)
12 https://doi.org/10.1061/(asce)0733-9429(2008)134:2(196)
13 https://doi.org/10.1080/00221687709499640
14 https://doi.org/10.1080/00221689809498376
15 https://doi.org/10.1098/rspl.1876.0004
16 schema:datePublished 2008-11
17 schema:datePublishedReg 2008-11-01
18 schema:description When the concentration data are not available, the transverse dispersion coefficient should be predicted using the basic hydraulic parameters to analyze mixing characteristics. In meandering channels, where the secondary flow plays an important role in the increase of transverse mixing, the transverse dispersion coefficient must be predicted accounting for the vertical variation of the transverse velocity. In this study, based on the vertical distribution equation for the transverse velocity, the theoretical formula for the transverse dispersion coefficient is newly developed. The merits of the theoretical formula on the transverse dispersion coefficient derived in this study are that it has the finite combination of elementary functions so that the transverse dispersion coefficient can be easily obtained compared with other theoretical methods, and that it can take into consideration the proper shear effect of the secondary flow. To verify the theoretical prediction of the transverse dispersion coefficient, both flow and tracer experiments are conducted in the meandering laboratory channel. The predicted transverse dispersion coefficient from the newly proposed equation shows better agreement with the observed transverse dispersion coefficient than those from other exiting equations.
19 schema:genre research_article
20 schema:inLanguage en
21 schema:isAccessibleForFree false
22 schema:isPartOf N58dc78c8ba864241ac94b844c6b68e9b
23 Nd70b7e7116bc4d1c933722511cc60eb2
24 sg:journal.1136365
25 schema:name Prediction of transverse dispersion coefficient using vertical profile of secondary flow in meandering channels
26 schema:pagination 417-426
27 schema:productId N1f01f19e17e64a2b9384849741b543f5
28 N21d802e2e40f4f3a9effe0b91fb24d98
29 Ne7cda2ebe2084c089d1696d3761a058c
30 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010858456
31 https://doi.org/10.1007/s12205-008-0417-1
32 schema:sdDatePublished 2019-04-10T16:44
33 schema:sdLicense https://scigraph.springernature.com/explorer/license/
34 schema:sdPublisher Ndb24f6eedf104a08b73cbfa38e6f78f1
35 schema:url http://link.springer.com/10.1007%2Fs12205-008-0417-1
36 sgo:license sg:explorer/license/
37 sgo:sdDataset articles
38 rdf:type schema:ScholarlyArticle
39 N1f01f19e17e64a2b9384849741b543f5 schema:name doi
40 schema:value 10.1007/s12205-008-0417-1
41 rdf:type schema:PropertyValue
42 N21d802e2e40f4f3a9effe0b91fb24d98 schema:name dimensions_id
43 schema:value pub.1010858456
44 rdf:type schema:PropertyValue
45 N58dc78c8ba864241ac94b844c6b68e9b schema:volumeNumber 12
46 rdf:type schema:PublicationVolume
47 N5c74ec4a3a4e402db981c3383b9dcf9d rdf:first sg:person.07611237707.45
48 rdf:rest rdf:nil
49 N9422e408ede7414eaab7b52978df8c48 rdf:first sg:person.014367110255.33
50 rdf:rest N5c74ec4a3a4e402db981c3383b9dcf9d
51 Nd70b7e7116bc4d1c933722511cc60eb2 schema:issueNumber 6
52 rdf:type schema:PublicationIssue
53 Ndb24f6eedf104a08b73cbfa38e6f78f1 schema:name Springer Nature - SN SciGraph project
54 rdf:type schema:Organization
55 Ne7cda2ebe2084c089d1696d3761a058c schema:name readcube_id
56 schema:value 33bb8ade5768e3c9b7c91d28d5bbd71a6d334e2fa8a570a458cd9d3472598751
57 rdf:type schema:PropertyValue
58 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
59 schema:name Engineering
60 rdf:type schema:DefinedTerm
61 anzsrc-for:0915 schema:inDefinedTermSet anzsrc-for:
62 schema:name Interdisciplinary Engineering
63 rdf:type schema:DefinedTerm
64 sg:journal.1136365 schema:issn 1226-7988
65 1976-3808
66 schema:name KSCE Journal of Civil Engineering
67 rdf:type schema:Periodical
68 sg:person.014367110255.33 schema:affiliation https://www.grid.ac/institutes/grid.496114.f
69 schema:familyName Baek
70 schema:givenName Kyong Oh
71 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014367110255.33
72 rdf:type schema:Person
73 sg:person.07611237707.45 schema:affiliation https://www.grid.ac/institutes/grid.31501.36
74 schema:familyName Seo
75 schema:givenName Il Won
76 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07611237707.45
77 rdf:type schema:Person
78 https://doi.org/10.1017/s0022112059000374 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053837228
79 rdf:type schema:CreativeWork
80 https://doi.org/10.1017/s0022112086002707 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053901117
81 rdf:type schema:CreativeWork
82 https://doi.org/10.1017/s0022112098002869 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054085312
83 rdf:type schema:CreativeWork
84 https://doi.org/10.1029/wr005i002p00496 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045600007
85 rdf:type schema:CreativeWork
86 https://doi.org/10.1029/wr012i004p00695 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034543801
87 rdf:type schema:CreativeWork
88 https://doi.org/10.1061/(asce)0733-9429(1998)124:1(25) schema:sameAs https://app.dimensions.ai/details/publication/pub.1057590929
89 rdf:type schema:CreativeWork
90 https://doi.org/10.1061/(asce)0733-9429(2003)129:2(129) schema:sameAs https://app.dimensions.ai/details/publication/pub.1057591938
91 rdf:type schema:CreativeWork
92 https://doi.org/10.1061/(asce)0733-9429(2006)132:10(1021) schema:sameAs https://app.dimensions.ai/details/publication/pub.1057592427
93 rdf:type schema:CreativeWork
94 https://doi.org/10.1061/(asce)0733-9429(2008)134:2(196) schema:sameAs https://app.dimensions.ai/details/publication/pub.1057592850
95 rdf:type schema:CreativeWork
96 https://doi.org/10.1080/00221687709499640 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013379867
97 rdf:type schema:CreativeWork
98 https://doi.org/10.1080/00221689809498376 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041192470
99 rdf:type schema:CreativeWork
100 https://doi.org/10.1098/rspl.1876.0004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021652605
101 rdf:type schema:CreativeWork
102 https://www.grid.ac/institutes/grid.31501.36 schema:alternateName Seoul National University
103 schema:name Dept. of Civil Engineering, Seoul National Univ., 152-742, Seoul, Korea
104 rdf:type schema:Organization
105 https://www.grid.ac/institutes/grid.496114.f schema:alternateName Gyeonggi Research Institute
106 schema:name Center for Paldang Watershed Research, Gyeonggi Research Institute, 440-290, Suwon, Korea
107 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...