Fatigue sensitivity analysis of steel catenary riser near touchdown point View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2017-10

AUTHORS

Kunpeng Wang, Chunyan Ji, Hongxiang Xue, Wenyong Tang

ABSTRACT

By transforming the platform response obtained from coupled hydrodynamic analysis to the top motions of steel catenary riser (SCR), the nonlinear dynamic analysis of the SCR is carried out in Abaqus/Aqua. In this analysis, the SCR-seabed interaction is well taken into account by introducing the seabed trench model and hysteretic seabed model. The fatigue damage of the SCR near touchdown point (TDP) is calculated using rain-flow counting methodology, and the sensitivity of the fatigue damage to the seabed and wave parameters are investigated. The results indicate that as seabed stiffness increases, the fatigue life and its sensitivity to seabed stiffness decrease. Seabed trenching may benefit the fatigue life of the SCR and the trench position should be elaborated for realistic fatigue damage prediction. Due to the induced platform response, significant wave height and spectral peak period have significant effects on the fatigue damage, thus the short-term sea state bins should be carefully selected from the wave scatter diagram. More... »

PAGES

570-576

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s12204-017-1876-7

DOI

http://dx.doi.org/10.1007/s12204-017-1876-7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1091922325


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0911", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Maritime Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Jiangsu University", 
          "id": "https://www.grid.ac/institutes/grid.440785.a", 
          "name": [
            "School of Naval Architecture and Ocean Engineering, Jiangsu University of Science and Technology, 212003, Zhenjiang, Jiangsu, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Kunpeng", 
        "id": "sg:person.015427405105.64", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015427405105.64"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Jiangsu University", 
          "id": "https://www.grid.ac/institutes/grid.440785.a", 
          "name": [
            "School of Naval Architecture and Ocean Engineering, Jiangsu University of Science and Technology, 212003, Zhenjiang, Jiangsu, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ji", 
        "givenName": "Chunyan", 
        "id": "sg:person.011644754017.86", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011644754017.86"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Shanghai Jiao Tong University", 
          "id": "https://www.grid.ac/institutes/grid.16821.3c", 
          "name": [
            "State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University, 200240, Shanghai, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xue", 
        "givenName": "Hongxiang", 
        "id": "sg:person.010362262337.26", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010362262337.26"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Shanghai Jiao Tong University", 
          "id": "https://www.grid.ac/institutes/grid.16821.3c", 
          "name": [
            "State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University, 200240, Shanghai, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tang", 
        "givenName": "Wenyong", 
        "id": "sg:person.010005713321.02", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010005713321.02"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.marstruc.2013.12.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006777644"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.engstruct.2014.07.029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017519839"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.marstruc.2014.12.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036405285"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.oceaneng.2009.10.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038638674"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.marstruc.2015.10.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053738934"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1061/(asce)1532-3641(2009)9:3(133)", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057621458"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2118/129572-pa", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068949266"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1115/omae2009-79405", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092782923"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1115/omae2009-79259", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092839122"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4043/18180-ms", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1096987711"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4043/16628-ms", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1096993184"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-10", 
    "datePublishedReg": "2017-10-01", 
    "description": "By transforming the platform response obtained from coupled hydrodynamic analysis to the top motions of steel catenary riser (SCR), the nonlinear dynamic analysis of the SCR is carried out in Abaqus/Aqua. In this analysis, the SCR-seabed interaction is well taken into account by introducing the seabed trench model and hysteretic seabed model. The fatigue damage of the SCR near touchdown point (TDP) is calculated using rain-flow counting methodology, and the sensitivity of the fatigue damage to the seabed and wave parameters are investigated. The results indicate that as seabed stiffness increases, the fatigue life and its sensitivity to seabed stiffness decrease. Seabed trenching may benefit the fatigue life of the SCR and the trench position should be elaborated for realistic fatigue damage prediction. Due to the induced platform response, significant wave height and spectral peak period have significant effects on the fatigue damage, thus the short-term sea state bins should be carefully selected from the wave scatter diagram.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s12204-017-1876-7", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136544", 
        "issn": [
          "1007-1172", 
          "1995-8188"
        ], 
        "name": "Journal of Shanghai Jiaotong University (Science)", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "22"
      }
    ], 
    "name": "Fatigue sensitivity analysis of steel catenary riser near touchdown point", 
    "pagination": "570-576", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "021d14cdd220b85eeef21d65dbdbdfa6d2fe0c381d172cd4e847f556cc4c141e"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s12204-017-1876-7"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1091922325"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s12204-017-1876-7", 
      "https://app.dimensions.ai/details/publication/pub.1091922325"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T20:02", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8681_00000541.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs12204-017-1876-7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12204-017-1876-7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12204-017-1876-7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12204-017-1876-7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12204-017-1876-7'


 

This table displays all metadata directly associated to this object as RDF triples.

118 TRIPLES      21 PREDICATES      38 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s12204-017-1876-7 schema:about anzsrc-for:09
2 anzsrc-for:0911
3 schema:author Ndb252b3e16da4cff872d80a95df3e14f
4 schema:citation https://doi.org/10.1016/j.engstruct.2014.07.029
5 https://doi.org/10.1016/j.marstruc.2013.12.003
6 https://doi.org/10.1016/j.marstruc.2014.12.003
7 https://doi.org/10.1016/j.marstruc.2015.10.007
8 https://doi.org/10.1016/j.oceaneng.2009.10.005
9 https://doi.org/10.1061/(asce)1532-3641(2009)9:3(133)
10 https://doi.org/10.1115/omae2009-79259
11 https://doi.org/10.1115/omae2009-79405
12 https://doi.org/10.2118/129572-pa
13 https://doi.org/10.4043/16628-ms
14 https://doi.org/10.4043/18180-ms
15 schema:datePublished 2017-10
16 schema:datePublishedReg 2017-10-01
17 schema:description By transforming the platform response obtained from coupled hydrodynamic analysis to the top motions of steel catenary riser (SCR), the nonlinear dynamic analysis of the SCR is carried out in Abaqus/Aqua. In this analysis, the SCR-seabed interaction is well taken into account by introducing the seabed trench model and hysteretic seabed model. The fatigue damage of the SCR near touchdown point (TDP) is calculated using rain-flow counting methodology, and the sensitivity of the fatigue damage to the seabed and wave parameters are investigated. The results indicate that as seabed stiffness increases, the fatigue life and its sensitivity to seabed stiffness decrease. Seabed trenching may benefit the fatigue life of the SCR and the trench position should be elaborated for realistic fatigue damage prediction. Due to the induced platform response, significant wave height and spectral peak period have significant effects on the fatigue damage, thus the short-term sea state bins should be carefully selected from the wave scatter diagram.
18 schema:genre research_article
19 schema:inLanguage en
20 schema:isAccessibleForFree false
21 schema:isPartOf N0557cb474ea744dfaef4a4b2c4b8e273
22 N6414ef196da34bf9b352bd200ec41b7c
23 sg:journal.1136544
24 schema:name Fatigue sensitivity analysis of steel catenary riser near touchdown point
25 schema:pagination 570-576
26 schema:productId N19032058a9574bae9c1622addbcb7851
27 N3b0fb0bf87c0442db6aa1f755a078d10
28 N3c18c1426dc7454480cea1d317f32d79
29 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091922325
30 https://doi.org/10.1007/s12204-017-1876-7
31 schema:sdDatePublished 2019-04-10T20:02
32 schema:sdLicense https://scigraph.springernature.com/explorer/license/
33 schema:sdPublisher N807877608be34f528cb9f8de23a515e9
34 schema:url https://link.springer.com/10.1007%2Fs12204-017-1876-7
35 sgo:license sg:explorer/license/
36 sgo:sdDataset articles
37 rdf:type schema:ScholarlyArticle
38 N0557cb474ea744dfaef4a4b2c4b8e273 schema:volumeNumber 22
39 rdf:type schema:PublicationVolume
40 N19032058a9574bae9c1622addbcb7851 schema:name readcube_id
41 schema:value 021d14cdd220b85eeef21d65dbdbdfa6d2fe0c381d172cd4e847f556cc4c141e
42 rdf:type schema:PropertyValue
43 N3b0fb0bf87c0442db6aa1f755a078d10 schema:name dimensions_id
44 schema:value pub.1091922325
45 rdf:type schema:PropertyValue
46 N3c18c1426dc7454480cea1d317f32d79 schema:name doi
47 schema:value 10.1007/s12204-017-1876-7
48 rdf:type schema:PropertyValue
49 N6414ef196da34bf9b352bd200ec41b7c schema:issueNumber 5
50 rdf:type schema:PublicationIssue
51 N807877608be34f528cb9f8de23a515e9 schema:name Springer Nature - SN SciGraph project
52 rdf:type schema:Organization
53 N92bf39e20f3f47ae8f446cf9913e3e8a rdf:first sg:person.010005713321.02
54 rdf:rest rdf:nil
55 Na4e63b8fc9db4b0fb6214744384cc9cb rdf:first sg:person.011644754017.86
56 rdf:rest Nb9a12343298749218dec20a466f2de22
57 Nb9a12343298749218dec20a466f2de22 rdf:first sg:person.010362262337.26
58 rdf:rest N92bf39e20f3f47ae8f446cf9913e3e8a
59 Ndb252b3e16da4cff872d80a95df3e14f rdf:first sg:person.015427405105.64
60 rdf:rest Na4e63b8fc9db4b0fb6214744384cc9cb
61 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
62 schema:name Engineering
63 rdf:type schema:DefinedTerm
64 anzsrc-for:0911 schema:inDefinedTermSet anzsrc-for:
65 schema:name Maritime Engineering
66 rdf:type schema:DefinedTerm
67 sg:journal.1136544 schema:issn 1007-1172
68 1995-8188
69 schema:name Journal of Shanghai Jiaotong University (Science)
70 rdf:type schema:Periodical
71 sg:person.010005713321.02 schema:affiliation https://www.grid.ac/institutes/grid.16821.3c
72 schema:familyName Tang
73 schema:givenName Wenyong
74 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010005713321.02
75 rdf:type schema:Person
76 sg:person.010362262337.26 schema:affiliation https://www.grid.ac/institutes/grid.16821.3c
77 schema:familyName Xue
78 schema:givenName Hongxiang
79 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010362262337.26
80 rdf:type schema:Person
81 sg:person.011644754017.86 schema:affiliation https://www.grid.ac/institutes/grid.440785.a
82 schema:familyName Ji
83 schema:givenName Chunyan
84 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011644754017.86
85 rdf:type schema:Person
86 sg:person.015427405105.64 schema:affiliation https://www.grid.ac/institutes/grid.440785.a
87 schema:familyName Wang
88 schema:givenName Kunpeng
89 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015427405105.64
90 rdf:type schema:Person
91 https://doi.org/10.1016/j.engstruct.2014.07.029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017519839
92 rdf:type schema:CreativeWork
93 https://doi.org/10.1016/j.marstruc.2013.12.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006777644
94 rdf:type schema:CreativeWork
95 https://doi.org/10.1016/j.marstruc.2014.12.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036405285
96 rdf:type schema:CreativeWork
97 https://doi.org/10.1016/j.marstruc.2015.10.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053738934
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1016/j.oceaneng.2009.10.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038638674
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1061/(asce)1532-3641(2009)9:3(133) schema:sameAs https://app.dimensions.ai/details/publication/pub.1057621458
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1115/omae2009-79259 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092839122
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1115/omae2009-79405 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092782923
106 rdf:type schema:CreativeWork
107 https://doi.org/10.2118/129572-pa schema:sameAs https://app.dimensions.ai/details/publication/pub.1068949266
108 rdf:type schema:CreativeWork
109 https://doi.org/10.4043/16628-ms schema:sameAs https://app.dimensions.ai/details/publication/pub.1096993184
110 rdf:type schema:CreativeWork
111 https://doi.org/10.4043/18180-ms schema:sameAs https://app.dimensions.ai/details/publication/pub.1096987711
112 rdf:type schema:CreativeWork
113 https://www.grid.ac/institutes/grid.16821.3c schema:alternateName Shanghai Jiao Tong University
114 schema:name State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University, 200240, Shanghai, China
115 rdf:type schema:Organization
116 https://www.grid.ac/institutes/grid.440785.a schema:alternateName Jiangsu University
117 schema:name School of Naval Architecture and Ocean Engineering, Jiangsu University of Science and Technology, 212003, Zhenjiang, Jiangsu, China
118 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...