Monte Carlo modeling of a conventional X-ray computed tomography scanner for gel dosimetry purposes View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2016-01

AUTHORS

Homa Hayati, Asghar Mesbahi, Mahmood Nazarpoor

ABSTRACT

Our purpose in the current study was to model an X-ray CT scanner with the Monte Carlo (MC) method for gel dosimetry. In this study, a conventional CT scanner with one array detector was modeled with use of the MCNPX MC code. The MC calculated photon fluence in detector arrays was used for image reconstruction of a simple water phantom as well as polyacrylamide polymer gel (PAG) used for radiation therapy. Image reconstruction was performed with the filtered back-projection method with a Hann filter and the Spline interpolation method. Using MC results, we obtained the dose-response curve for images of irradiated gel at different absorbed doses. A spatial resolution of about 2 mm was found for our simulated MC model. The MC-based CT images of the PAG gel showed a reliable increase in the CT number with increasing absorbed dose for the studied gel. Also, our results showed that the current MC model of a CT scanner can be used for further studies on the parameters that influence the usability and reliability of results, such as the photon energy spectra and exposure techniques in X-ray CT gel dosimetry. More... »

PAGES

37-43

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s12194-015-0331-4

DOI

http://dx.doi.org/10.1007/s12194-015-0331-4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1047986730

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/26205316


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Other Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gels", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Image Processing, Computer-Assisted", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Monte Carlo Method", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Photons", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Radiometry", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Tomography Scanners, X-Ray Computed", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Tabriz University of Medical Sciences", 
          "id": "https://www.grid.ac/institutes/grid.412888.f", 
          "name": [
            "International Branch of Tabriz University of Medical Sciences (ARAS), Tabriz, Iran"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hayati", 
        "givenName": "Homa", 
        "id": "sg:person.01257726145.96", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01257726145.96"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Dokuz Eyl\u00fcl University", 
          "id": "https://www.grid.ac/institutes/grid.21200.31", 
          "name": [
            "Medical Physics Department, Medical School, Tabriz University of Medical Sciences, Tabriz, Iran", 
            "Medical Physics Department, Institute of Health Sciences, Dokuz Eylul University, Izmir, Turkey"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mesbahi", 
        "givenName": "Asghar", 
        "id": "sg:person.01126407214.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01126407214.16"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Islamic Azad University, Tehran", 
          "id": "https://www.grid.ac/institutes/grid.411463.5", 
          "name": [
            "International Branch of Tabriz University of Medical Sciences (ARAS), Tabriz, Iran", 
            "Faculty of Paramedicine, Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nazarpoor", 
        "givenName": "Mahmood", 
        "id": "sg:person.01220510623.85", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01220510623.85"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/s0360-3016(97)00146-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003691931"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1118/1.1633106", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003742276"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1118/1.2818742", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020616190"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.7150/thno.6815", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025099762"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.rpor.2010.10.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031266089"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1120/jacmp.v3i2.2575", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036281971"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1742-6596/250/1/012073", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036863358"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1742-6596/250/1/012073", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036863358"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1118/1.3264616", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042987335"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1118/1.3547718", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046198856"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0031-9155/25/1/011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059020576"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0031-9155/47/23/310", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059024648"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0031-9155/48/16/306", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059024877"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0031-9155/48/24/014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059025007"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0031-9155/49/12/001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059025151"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0031-9155/49/18/009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059025295"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0031-9155/49/8/005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059025495"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0031-9155/50/20/009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059025779"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0031-9155/50/20/009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059025779"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0031-9155/50/8/008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059025968"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0031-9155/54/3/003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059027951"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0031-9155/55/18/002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059028321"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0031-9155/55/18/002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059028321"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1120/1.1461916", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062265435"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016-01", 
    "datePublishedReg": "2016-01-01", 
    "description": "Our purpose in the current study was to model an X-ray CT scanner with the Monte Carlo (MC) method for gel dosimetry. In this study, a conventional CT scanner with one array detector was modeled with use of the MCNPX MC code. The MC calculated photon fluence in detector arrays was used for image reconstruction of a simple water phantom as well as polyacrylamide polymer gel (PAG) used for radiation therapy. Image reconstruction was performed with the filtered back-projection method with a Hann filter and the Spline interpolation method. Using MC results, we obtained the dose-response curve for images of irradiated gel at different absorbed doses. A spatial resolution of about 2\u00a0mm was found for our simulated MC model. The MC-based CT images of the PAG gel showed a reliable increase in the CT number with increasing absorbed dose for the studied gel. Also, our results showed that the current MC model of a CT scanner can be used for further studies on the parameters that influence the usability and reliability of results, such as the photon energy spectra and exposure techniques in X-ray CT gel dosimetry. ", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s12194-015-0331-4", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1039721", 
        "issn": [
          "1865-0333", 
          "1865-0341"
        ], 
        "name": "Radiological Physics and Technology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "9"
      }
    ], 
    "name": "Monte Carlo modeling of a conventional X-ray computed tomography scanner for gel dosimetry purposes", 
    "pagination": "37-43", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "e4993b3bba8bfb0bc00f3cac91b8b4991951117a2bd76b54aadff4b8c793db08"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "26205316"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101467995"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s12194-015-0331-4"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1047986730"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s12194-015-0331-4", 
      "https://app.dimensions.ai/details/publication/pub.1047986730"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T20:50", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8684_00000524.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs12194-015-0331-4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12194-015-0331-4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12194-015-0331-4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12194-015-0331-4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12194-015-0331-4'


 

This table displays all metadata directly associated to this object as RDF triples.

178 TRIPLES      21 PREDICATES      56 URIs      27 LITERALS      15 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s12194-015-0331-4 schema:about N536670ad5c644dfcaec776fe4e784a7f
2 N5e1559a6665a434bafaa59e93922e7ca
3 N5ee85b13890e4e909a64fe48c328599d
4 N628b21e10d394d6484c610a8e025c0c6
5 N8ff6e8b4ce05438f9968efb7ab02c4fc
6 Ne4bc728455a94a1fbe42f0298a86cd43
7 anzsrc-for:02
8 anzsrc-for:0299
9 schema:author N5dfde81704ab46b085ced32e58c7efd8
10 schema:citation https://doi.org/10.1016/j.rpor.2010.10.001
11 https://doi.org/10.1016/s0360-3016(97)00146-6
12 https://doi.org/10.1088/0031-9155/25/1/011
13 https://doi.org/10.1088/0031-9155/47/23/310
14 https://doi.org/10.1088/0031-9155/48/16/306
15 https://doi.org/10.1088/0031-9155/48/24/014
16 https://doi.org/10.1088/0031-9155/49/12/001
17 https://doi.org/10.1088/0031-9155/49/18/009
18 https://doi.org/10.1088/0031-9155/49/8/005
19 https://doi.org/10.1088/0031-9155/50/20/009
20 https://doi.org/10.1088/0031-9155/50/8/008
21 https://doi.org/10.1088/0031-9155/54/3/003
22 https://doi.org/10.1088/0031-9155/55/18/002
23 https://doi.org/10.1088/1742-6596/250/1/012073
24 https://doi.org/10.1118/1.1633106
25 https://doi.org/10.1118/1.2818742
26 https://doi.org/10.1118/1.3264616
27 https://doi.org/10.1118/1.3547718
28 https://doi.org/10.1120/1.1461916
29 https://doi.org/10.1120/jacmp.v3i2.2575
30 https://doi.org/10.7150/thno.6815
31 schema:datePublished 2016-01
32 schema:datePublishedReg 2016-01-01
33 schema:description Our purpose in the current study was to model an X-ray CT scanner with the Monte Carlo (MC) method for gel dosimetry. In this study, a conventional CT scanner with one array detector was modeled with use of the MCNPX MC code. The MC calculated photon fluence in detector arrays was used for image reconstruction of a simple water phantom as well as polyacrylamide polymer gel (PAG) used for radiation therapy. Image reconstruction was performed with the filtered back-projection method with a Hann filter and the Spline interpolation method. Using MC results, we obtained the dose-response curve for images of irradiated gel at different absorbed doses. A spatial resolution of about 2 mm was found for our simulated MC model. The MC-based CT images of the PAG gel showed a reliable increase in the CT number with increasing absorbed dose for the studied gel. Also, our results showed that the current MC model of a CT scanner can be used for further studies on the parameters that influence the usability and reliability of results, such as the photon energy spectra and exposure techniques in X-ray CT gel dosimetry.
34 schema:genre research_article
35 schema:inLanguage en
36 schema:isAccessibleForFree false
37 schema:isPartOf N7b1759cf71744746af9e78c487af530e
38 Nee5ea7f3421e4df3936c39029c3576a5
39 sg:journal.1039721
40 schema:name Monte Carlo modeling of a conventional X-ray computed tomography scanner for gel dosimetry purposes
41 schema:pagination 37-43
42 schema:productId N01f83235045f4772ae5d5ee5ee0e71de
43 N345ff6a6dcf14a81ae3057826bc25e77
44 N3fb808b7fe9545738e81304f57980a3f
45 N6ccb0e92243249ffb488936a66c9da10
46 Ne320817bd11341f2b4d196e439d6e0e9
47 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047986730
48 https://doi.org/10.1007/s12194-015-0331-4
49 schema:sdDatePublished 2019-04-10T20:50
50 schema:sdLicense https://scigraph.springernature.com/explorer/license/
51 schema:sdPublisher N48a19b60436843bdbf7980a30163fdd6
52 schema:url http://link.springer.com/10.1007%2Fs12194-015-0331-4
53 sgo:license sg:explorer/license/
54 sgo:sdDataset articles
55 rdf:type schema:ScholarlyArticle
56 N01f83235045f4772ae5d5ee5ee0e71de schema:name readcube_id
57 schema:value e4993b3bba8bfb0bc00f3cac91b8b4991951117a2bd76b54aadff4b8c793db08
58 rdf:type schema:PropertyValue
59 N345ff6a6dcf14a81ae3057826bc25e77 schema:name nlm_unique_id
60 schema:value 101467995
61 rdf:type schema:PropertyValue
62 N3fb808b7fe9545738e81304f57980a3f schema:name pubmed_id
63 schema:value 26205316
64 rdf:type schema:PropertyValue
65 N48a19b60436843bdbf7980a30163fdd6 schema:name Springer Nature - SN SciGraph project
66 rdf:type schema:Organization
67 N536670ad5c644dfcaec776fe4e784a7f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
68 schema:name Radiometry
69 rdf:type schema:DefinedTerm
70 N5dfde81704ab46b085ced32e58c7efd8 rdf:first sg:person.01257726145.96
71 rdf:rest Neada2f7b1bb148d99b448feceaeb093c
72 N5e1559a6665a434bafaa59e93922e7ca schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
73 schema:name Image Processing, Computer-Assisted
74 rdf:type schema:DefinedTerm
75 N5ee85b13890e4e909a64fe48c328599d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
76 schema:name Tomography Scanners, X-Ray Computed
77 rdf:type schema:DefinedTerm
78 N628b21e10d394d6484c610a8e025c0c6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
79 schema:name Monte Carlo Method
80 rdf:type schema:DefinedTerm
81 N6ccb0e92243249ffb488936a66c9da10 schema:name doi
82 schema:value 10.1007/s12194-015-0331-4
83 rdf:type schema:PropertyValue
84 N7b1759cf71744746af9e78c487af530e schema:issueNumber 1
85 rdf:type schema:PublicationIssue
86 N8ff6e8b4ce05438f9968efb7ab02c4fc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
87 schema:name Photons
88 rdf:type schema:DefinedTerm
89 N9931d5f3cf024e6da5a65e31552fba6c rdf:first sg:person.01220510623.85
90 rdf:rest rdf:nil
91 Ne320817bd11341f2b4d196e439d6e0e9 schema:name dimensions_id
92 schema:value pub.1047986730
93 rdf:type schema:PropertyValue
94 Ne4bc728455a94a1fbe42f0298a86cd43 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
95 schema:name Gels
96 rdf:type schema:DefinedTerm
97 Neada2f7b1bb148d99b448feceaeb093c rdf:first sg:person.01126407214.16
98 rdf:rest N9931d5f3cf024e6da5a65e31552fba6c
99 Nee5ea7f3421e4df3936c39029c3576a5 schema:volumeNumber 9
100 rdf:type schema:PublicationVolume
101 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
102 schema:name Physical Sciences
103 rdf:type schema:DefinedTerm
104 anzsrc-for:0299 schema:inDefinedTermSet anzsrc-for:
105 schema:name Other Physical Sciences
106 rdf:type schema:DefinedTerm
107 sg:journal.1039721 schema:issn 1865-0333
108 1865-0341
109 schema:name Radiological Physics and Technology
110 rdf:type schema:Periodical
111 sg:person.01126407214.16 schema:affiliation https://www.grid.ac/institutes/grid.21200.31
112 schema:familyName Mesbahi
113 schema:givenName Asghar
114 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01126407214.16
115 rdf:type schema:Person
116 sg:person.01220510623.85 schema:affiliation https://www.grid.ac/institutes/grid.411463.5
117 schema:familyName Nazarpoor
118 schema:givenName Mahmood
119 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01220510623.85
120 rdf:type schema:Person
121 sg:person.01257726145.96 schema:affiliation https://www.grid.ac/institutes/grid.412888.f
122 schema:familyName Hayati
123 schema:givenName Homa
124 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01257726145.96
125 rdf:type schema:Person
126 https://doi.org/10.1016/j.rpor.2010.10.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031266089
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1016/s0360-3016(97)00146-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003691931
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1088/0031-9155/25/1/011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059020576
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1088/0031-9155/47/23/310 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059024648
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1088/0031-9155/48/16/306 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059024877
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1088/0031-9155/48/24/014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059025007
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1088/0031-9155/49/12/001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059025151
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1088/0031-9155/49/18/009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059025295
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1088/0031-9155/49/8/005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059025495
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1088/0031-9155/50/20/009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059025779
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1088/0031-9155/50/8/008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059025968
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1088/0031-9155/54/3/003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059027951
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1088/0031-9155/55/18/002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059028321
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1088/1742-6596/250/1/012073 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036863358
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1118/1.1633106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003742276
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1118/1.2818742 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020616190
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1118/1.3264616 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042987335
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1118/1.3547718 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046198856
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1120/1.1461916 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062265435
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1120/jacmp.v3i2.2575 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036281971
165 rdf:type schema:CreativeWork
166 https://doi.org/10.7150/thno.6815 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025099762
167 rdf:type schema:CreativeWork
168 https://www.grid.ac/institutes/grid.21200.31 schema:alternateName Dokuz Eylül University
169 schema:name Medical Physics Department, Institute of Health Sciences, Dokuz Eylul University, Izmir, Turkey
170 Medical Physics Department, Medical School, Tabriz University of Medical Sciences, Tabriz, Iran
171 rdf:type schema:Organization
172 https://www.grid.ac/institutes/grid.411463.5 schema:alternateName Islamic Azad University, Tehran
173 schema:name Faculty of Paramedicine, Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran
174 International Branch of Tabriz University of Medical Sciences (ARAS), Tabriz, Iran
175 rdf:type schema:Organization
176 https://www.grid.ac/institutes/grid.412888.f schema:alternateName Tabriz University of Medical Sciences
177 schema:name International Branch of Tabriz University of Medical Sciences (ARAS), Tabriz, Iran
178 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...