SVM-based feature selection methods for emotion recognition from multimodal data View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2017-03

AUTHORS

Cristian Torres-Valencia, Mauricio Álvarez-López, Álvaro Orozco-Gutiérrez

ABSTRACT

Multimodal emotion recognition is an emerging field within affective computing that, by simultaneously using different physiological signals, looks for evaluating an emotional state. Physiological signals such as electroencephalogram (EEG), temperature and electrocardiogram (ECG), to name a few, have been used to assess emotions like happiness, sadness or anger, or to assess levels of arousal or valence. Research efforts in this field so far have mainly focused on building pattern recognition systems with an emphasis on feature extraction and classifier design. A different set of features is extracted over each type of physiological signal, and then all these sets of features are combined, and used to feed a particular classifier. An important stage of a pattern recognition system that has received less attention within this literature is the feature selection stage. Feature selection is particularly useful for uncovering the discriminant abilities of particular physiological signals. The main objective of this paper is to study the discriminant power of different features associated to several physiological signals used for multimodal emotion recognition. To this end, we apply recursive feature elimination and margin-maximizing feature elimination over two well known multimodal databases, namely, DEAP and MAHNOB-HCI. Results show that EEG-related features show the highest discrimination ability. For the arousal index, EEG features are accompanied by Galvanic skin response features in achieving the highest discrimination power, whereas for the valence index, EEG features are accompanied by the heart rate features in achieving the highest discrimination power. More... »

PAGES

9-23

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s12193-016-0222-y

DOI

http://dx.doi.org/10.1007/s12193-016-0222-y

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1015594740


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1701", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Psychology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/17", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Psychology and Cognitive Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Technological University of Pereira", 
          "id": "https://www.grid.ac/institutes/grid.412256.6", 
          "name": [
            "Department of Electrical Engineering, Faculty of Engineering, Universidad Tecnol\u00f3gica de Pereira, Pereira, Colombia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Torres-Valencia", 
        "givenName": "Cristian", 
        "id": "sg:person.010435251713.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010435251713.18"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Technological University of Pereira", 
          "id": "https://www.grid.ac/institutes/grid.412256.6", 
          "name": [
            "Department of Electrical Engineering, Faculty of Engineering, Universidad Tecnol\u00f3gica de Pereira, Pereira, Colombia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "\u00c1lvarez-L\u00f3pez", 
        "givenName": "Mauricio", 
        "id": "sg:person.013255511720.26", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013255511720.26"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Technological University of Pereira", 
          "id": "https://www.grid.ac/institutes/grid.412256.6", 
          "name": [
            "Department of Electrical Engineering, Faculty of Engineering, Universidad Tecnol\u00f3gica de Pereira, Pereira, Colombia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Orozco-Guti\u00e9rrez", 
        "givenName": "\u00c1lvaro", 
        "id": "sg:person.012201216001.24", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012201216001.24"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1002/0470013192.bsa501", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000081840"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/0470013192.bsa501", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000081840"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physrep.2006.11.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020886724"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0925-2312(01)00653-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023349929"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00994018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025150743", 
          "https://doi.org/10.1007/bf00994018"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.biopsycho.2010.03.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033009745"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.snb.2015.02.025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034295962"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.66.026702", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036599860"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.66.026702", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036599860"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ejor.2004.08.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045401696"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1012487302797", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048573168", 
          "https://doi.org/10.1023/a:1012487302797"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.imavis.2012.10.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050572009"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/jbhi.2014.2300940", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061276819"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/jbhi.2014.2307584", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061276844"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/t-affc.2011.15", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061446966"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/t-affc.2011.25", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061446977"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/t-affc.2011.30", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061446983"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/t-affc.2011.37", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061446989"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/t-affc.2011.9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061446999"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tmm.2004.840618", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061697058"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tnn.2010.2041069", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061717679"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tpami.2008.52", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061743655"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/s1793351x08000439", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063021577"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1209/0295-5075/4/9/004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064230992"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/embc.2013.6610493", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1078797215"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/ispacs.2009.4806747", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093676587"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tsp.2012.6256370", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094368364"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/ccdc.2013.6561487", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094399851"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iccat.2013.6522003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094524342"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/dsr.2011.6026823", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094789435"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iccis.2010.5518574", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095143989"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iecbes.2012.6498118", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095680198"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-03", 
    "datePublishedReg": "2017-03-01", 
    "description": "Multimodal emotion recognition is an emerging field within affective computing that, by simultaneously using different physiological signals, looks for evaluating an emotional state. Physiological signals such as electroencephalogram (EEG), temperature and electrocardiogram (ECG), to name a few, have been used to assess emotions like happiness, sadness or anger, or to assess levels of arousal or valence. Research efforts in this field so far have mainly focused on building pattern recognition systems with an emphasis on feature extraction and classifier design. A different set of features is extracted over each type of physiological signal, and then all these sets of features are combined, and used to feed a particular classifier. An important stage of a pattern recognition system that has received less attention within this literature is the feature selection stage. Feature selection is particularly useful for uncovering the discriminant abilities of particular physiological signals. The main objective of this paper is to study the discriminant power of different features associated to several physiological signals used for multimodal emotion recognition. To this end, we apply recursive feature elimination and margin-maximizing feature elimination over two well known multimodal databases, namely, DEAP and MAHNOB-HCI. Results show that EEG-related features show the highest discrimination ability. For the arousal index, EEG features are accompanied by Galvanic skin response features in achieving the highest discrimination power, whereas for the valence index, EEG features are accompanied by the heart rate features in achieving the highest discrimination power.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s12193-016-0222-y", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1135962", 
        "issn": [
          "1783-7677", 
          "1783-8738"
        ], 
        "name": "Journal on Multimodal User Interfaces", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "11"
      }
    ], 
    "name": "SVM-based feature selection methods for emotion recognition from multimodal data", 
    "pagination": "9-23", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "4a4d30fa4db54edf9b92230eb0c890e5f418efcb03e42dcb2d97ea177e23514d"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s12193-016-0222-y"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1015594740"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s12193-016-0222-y", 
      "https://app.dimensions.ai/details/publication/pub.1015594740"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T15:03", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8663_00000521.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs12193-016-0222-y"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12193-016-0222-y'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12193-016-0222-y'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12193-016-0222-y'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12193-016-0222-y'


 

This table displays all metadata directly associated to this object as RDF triples.

167 TRIPLES      21 PREDICATES      57 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s12193-016-0222-y schema:about anzsrc-for:17
2 anzsrc-for:1701
3 schema:author Nced0c5836d3e4ba8a6ab27b7cea48233
4 schema:citation sg:pub.10.1007/bf00994018
5 sg:pub.10.1023/a:1012487302797
6 https://doi.org/10.1002/0470013192.bsa501
7 https://doi.org/10.1016/j.biopsycho.2010.03.010
8 https://doi.org/10.1016/j.ejor.2004.08.010
9 https://doi.org/10.1016/j.imavis.2012.10.002
10 https://doi.org/10.1016/j.physrep.2006.11.001
11 https://doi.org/10.1016/j.snb.2015.02.025
12 https://doi.org/10.1016/s0925-2312(01)00653-1
13 https://doi.org/10.1103/physreve.66.026702
14 https://doi.org/10.1109/ccdc.2013.6561487
15 https://doi.org/10.1109/dsr.2011.6026823
16 https://doi.org/10.1109/embc.2013.6610493
17 https://doi.org/10.1109/iccat.2013.6522003
18 https://doi.org/10.1109/iccis.2010.5518574
19 https://doi.org/10.1109/iecbes.2012.6498118
20 https://doi.org/10.1109/ispacs.2009.4806747
21 https://doi.org/10.1109/jbhi.2014.2300940
22 https://doi.org/10.1109/jbhi.2014.2307584
23 https://doi.org/10.1109/t-affc.2011.15
24 https://doi.org/10.1109/t-affc.2011.25
25 https://doi.org/10.1109/t-affc.2011.30
26 https://doi.org/10.1109/t-affc.2011.37
27 https://doi.org/10.1109/t-affc.2011.9
28 https://doi.org/10.1109/tmm.2004.840618
29 https://doi.org/10.1109/tnn.2010.2041069
30 https://doi.org/10.1109/tpami.2008.52
31 https://doi.org/10.1109/tsp.2012.6256370
32 https://doi.org/10.1142/s1793351x08000439
33 https://doi.org/10.1209/0295-5075/4/9/004
34 schema:datePublished 2017-03
35 schema:datePublishedReg 2017-03-01
36 schema:description Multimodal emotion recognition is an emerging field within affective computing that, by simultaneously using different physiological signals, looks for evaluating an emotional state. Physiological signals such as electroencephalogram (EEG), temperature and electrocardiogram (ECG), to name a few, have been used to assess emotions like happiness, sadness or anger, or to assess levels of arousal or valence. Research efforts in this field so far have mainly focused on building pattern recognition systems with an emphasis on feature extraction and classifier design. A different set of features is extracted over each type of physiological signal, and then all these sets of features are combined, and used to feed a particular classifier. An important stage of a pattern recognition system that has received less attention within this literature is the feature selection stage. Feature selection is particularly useful for uncovering the discriminant abilities of particular physiological signals. The main objective of this paper is to study the discriminant power of different features associated to several physiological signals used for multimodal emotion recognition. To this end, we apply recursive feature elimination and margin-maximizing feature elimination over two well known multimodal databases, namely, DEAP and MAHNOB-HCI. Results show that EEG-related features show the highest discrimination ability. For the arousal index, EEG features are accompanied by Galvanic skin response features in achieving the highest discrimination power, whereas for the valence index, EEG features are accompanied by the heart rate features in achieving the highest discrimination power.
37 schema:genre research_article
38 schema:inLanguage en
39 schema:isAccessibleForFree false
40 schema:isPartOf Nad22b6431e2a43edb8ee963b37b53e1e
41 Nce95903e946c4dfe9a4b5c8fee004ff0
42 sg:journal.1135962
43 schema:name SVM-based feature selection methods for emotion recognition from multimodal data
44 schema:pagination 9-23
45 schema:productId N4a2320984bf54f499ae8f830a2927e0f
46 N7039b86cc7f24144a9aa513d0b5c7c24
47 N79907cde68d142bf8ba5b8726a90602d
48 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015594740
49 https://doi.org/10.1007/s12193-016-0222-y
50 schema:sdDatePublished 2019-04-10T15:03
51 schema:sdLicense https://scigraph.springernature.com/explorer/license/
52 schema:sdPublisher Na28353e90e8c48d79d1aba5ac5e5e2c6
53 schema:url http://link.springer.com/10.1007%2Fs12193-016-0222-y
54 sgo:license sg:explorer/license/
55 sgo:sdDataset articles
56 rdf:type schema:ScholarlyArticle
57 N3bbec90d7a04405b88dcb498e4c8aea9 rdf:first sg:person.013255511720.26
58 rdf:rest Ne82a07f9ae654c1fabd5e34acd585402
59 N4a2320984bf54f499ae8f830a2927e0f schema:name readcube_id
60 schema:value 4a4d30fa4db54edf9b92230eb0c890e5f418efcb03e42dcb2d97ea177e23514d
61 rdf:type schema:PropertyValue
62 N7039b86cc7f24144a9aa513d0b5c7c24 schema:name doi
63 schema:value 10.1007/s12193-016-0222-y
64 rdf:type schema:PropertyValue
65 N79907cde68d142bf8ba5b8726a90602d schema:name dimensions_id
66 schema:value pub.1015594740
67 rdf:type schema:PropertyValue
68 Na28353e90e8c48d79d1aba5ac5e5e2c6 schema:name Springer Nature - SN SciGraph project
69 rdf:type schema:Organization
70 Nad22b6431e2a43edb8ee963b37b53e1e schema:issueNumber 1
71 rdf:type schema:PublicationIssue
72 Nce95903e946c4dfe9a4b5c8fee004ff0 schema:volumeNumber 11
73 rdf:type schema:PublicationVolume
74 Nced0c5836d3e4ba8a6ab27b7cea48233 rdf:first sg:person.010435251713.18
75 rdf:rest N3bbec90d7a04405b88dcb498e4c8aea9
76 Ne82a07f9ae654c1fabd5e34acd585402 rdf:first sg:person.012201216001.24
77 rdf:rest rdf:nil
78 anzsrc-for:17 schema:inDefinedTermSet anzsrc-for:
79 schema:name Psychology and Cognitive Sciences
80 rdf:type schema:DefinedTerm
81 anzsrc-for:1701 schema:inDefinedTermSet anzsrc-for:
82 schema:name Psychology
83 rdf:type schema:DefinedTerm
84 sg:journal.1135962 schema:issn 1783-7677
85 1783-8738
86 schema:name Journal on Multimodal User Interfaces
87 rdf:type schema:Periodical
88 sg:person.010435251713.18 schema:affiliation https://www.grid.ac/institutes/grid.412256.6
89 schema:familyName Torres-Valencia
90 schema:givenName Cristian
91 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010435251713.18
92 rdf:type schema:Person
93 sg:person.012201216001.24 schema:affiliation https://www.grid.ac/institutes/grid.412256.6
94 schema:familyName Orozco-Gutiérrez
95 schema:givenName Álvaro
96 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012201216001.24
97 rdf:type schema:Person
98 sg:person.013255511720.26 schema:affiliation https://www.grid.ac/institutes/grid.412256.6
99 schema:familyName Álvarez-López
100 schema:givenName Mauricio
101 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013255511720.26
102 rdf:type schema:Person
103 sg:pub.10.1007/bf00994018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025150743
104 https://doi.org/10.1007/bf00994018
105 rdf:type schema:CreativeWork
106 sg:pub.10.1023/a:1012487302797 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048573168
107 https://doi.org/10.1023/a:1012487302797
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1002/0470013192.bsa501 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000081840
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1016/j.biopsycho.2010.03.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033009745
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1016/j.ejor.2004.08.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045401696
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1016/j.imavis.2012.10.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050572009
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1016/j.physrep.2006.11.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020886724
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1016/j.snb.2015.02.025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034295962
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1016/s0925-2312(01)00653-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023349929
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1103/physreve.66.026702 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036599860
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1109/ccdc.2013.6561487 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094399851
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1109/dsr.2011.6026823 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094789435
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1109/embc.2013.6610493 schema:sameAs https://app.dimensions.ai/details/publication/pub.1078797215
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1109/iccat.2013.6522003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094524342
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1109/iccis.2010.5518574 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095143989
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1109/iecbes.2012.6498118 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095680198
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1109/ispacs.2009.4806747 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093676587
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1109/jbhi.2014.2300940 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061276819
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1109/jbhi.2014.2307584 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061276844
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1109/t-affc.2011.15 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061446966
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1109/t-affc.2011.25 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061446977
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1109/t-affc.2011.30 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061446983
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1109/t-affc.2011.37 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061446989
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1109/t-affc.2011.9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061446999
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1109/tmm.2004.840618 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061697058
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1109/tnn.2010.2041069 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061717679
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1109/tpami.2008.52 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061743655
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1109/tsp.2012.6256370 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094368364
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1142/s1793351x08000439 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063021577
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1209/0295-5075/4/9/004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064230992
164 rdf:type schema:CreativeWork
165 https://www.grid.ac/institutes/grid.412256.6 schema:alternateName Technological University of Pereira
166 schema:name Department of Electrical Engineering, Faculty of Engineering, Universidad Tecnológica de Pereira, Pereira, Colombia
167 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...