# Few-weight ZpZp[u]-additive codes from down-sets

Ontology type: schema:ScholarlyArticle

### Article Info

DATE

2021-09-08

AUTHORS ABSTRACT

In this paper, we study a special class of ZpZp[u]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {Z}}_p{\mathbb {Z}}_p[u]$$\end{document}-additive code CL\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_L$$\end{document} defined in terms of the down-set, where u2=u\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u^2=u$$\end{document} and p is an odd prime. By a proper choice of the down-set, we determine the weight distribution of the additive code CL\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_L$$\end{document}. In particular, we obtain several infinite families of minimal and optimal few-weight p-codes via the Gray map, and these codes can be applied to secret sharing schemes. More... »

PAGES

1-8

### References to SciGraph publications

• 2017-10-24. Few-weight codes from trace codes over a local ring in APPLICABLE ALGEBRA IN ENGINEERING, COMMUNICATION AND COMPUTING
• 2019-08-14. One-weight and two-weight ℤ2ℤ2[u,v]-additive codes in CRYPTOGRAPHY AND COMMUNICATIONS
• 2017-11-24. Linear codes from simplicial complexes in DESIGNS, CODES AND CRYPTOGRAPHY
• 2017-10-28. New Classes of p-Ary Few Weight Codes in BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY

### Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s12190-021-01594-x

DOI

http://dx.doi.org/10.1007/s12190-021-01594-x

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1140944115

Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service:

[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Mathematical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Information and Computing Sciences",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Key Laboratory of Intelligent Computing and Signal Processing, Ministry of Education, School of Mathematical Sciences, Anhui University, 230601, Hefei, China",
"id": "http://www.grid.ac/institutes/grid.252245.6",
"name": [
"Key Laboratory of Intelligent Computing and Signal Processing, Ministry of Education, School of Mathematical Sciences, Anhui University, 230601, Hefei, China"
],
"type": "Organization"
},
"familyName": "Wang",
"givenName": "Shukai",
"id": "sg:person.016326742634.42",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016326742634.42"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Key Laboratory of Intelligent Computing and Signal Processing, Ministry of Education, School of Mathematical Sciences, Anhui University, 230601, Hefei, China",
"id": "http://www.grid.ac/institutes/grid.252245.6",
"name": [
"Key Laboratory of Intelligent Computing and Signal Processing, Ministry of Education, School of Mathematical Sciences, Anhui University, 230601, Hefei, China"
],
"type": "Organization"
},
"familyName": "Shi",
"givenName": "Minjia",
"id": "sg:person.012012432235.16",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012012432235.16"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/s12095-019-00391-5",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1120333610",
"https://doi.org/10.1007/s12095-019-00391-5"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s40840-017-0553-1",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1092416652",
"https://doi.org/10.1007/s40840-017-0553-1"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s10623-017-0442-5",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1092948267",
"https://doi.org/10.1007/s10623-017-0442-5"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00200-017-0345-8",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1092340940",
"https://doi.org/10.1007/s00200-017-0345-8"
],
"type": "CreativeWork"
}
],
"datePublished": "2021-09-08",
"datePublishedReg": "2021-09-08",
"description": "In this paper, we study a special class of ZpZp[u]\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$${\\mathbb {Z}}_p{\\mathbb {Z}}_p[u]$$\\end{document}-additive code CL\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$C_L$$\\end{document} defined in terms of the down-set, where u2=u\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$u^2=u$$\\end{document} and p is an odd prime. By a proper choice of the down-set, we determine the weight distribution of the additive code CL\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$C_L$$\\end{document}. In particular, we obtain several infinite families of minimal and optimal few-weight p-codes via the Gray map, and these codes can be applied to secret sharing schemes.",
"genre": "article",
"id": "sg:pub.10.1007/s12190-021-01594-x",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1136398",
"issn": [
"1598-5865",
"1865-2085"
],
"name": "Journal of Applied Mathematics and Computing",
"publisher": "Springer Nature",
"type": "Periodical"
}
],
"keywords": [
"weight P",
"weight",
"family",
"choice",
"primes",
"class",
"terms",
"distribution",
"weight distribution",
"code",
"set",
"maps",
"U2",
"proper choice",
"secret sharing scheme",
"sharing scheme",
"paper",
"special class",
"odd prime",
"scheme",
"infinite family",
"Gray map"
],
"name": "Few-weight ZpZp[u]-additive codes from down-sets",
"pagination": "1-8",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1140944115"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s12190-021-01594-x"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s12190-021-01594-x",
"https://app.dimensions.ai/details/publication/pub.1140944115"
],
"sdDataset": "articles",
"sdDatePublished": "2022-01-01T19:02",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_889.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1007/s12190-021-01594-x"
}
]

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12190-021-01594-x'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12190-021-01594-x'

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12190-021-01594-x'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12190-021-01594-x'

This table displays all metadata directly associated to this object as RDF triples.

98 TRIPLES      22 PREDICATES      50 URIs      38 LITERALS      4 BLANK NODES

Subject Predicate Object
2 anzsrc-for:08
3 schema:author N8ed11659955d43e6b218978c6e15fcce
4 schema:citation sg:pub.10.1007/s00200-017-0345-8
5 sg:pub.10.1007/s10623-017-0442-5
6 sg:pub.10.1007/s12095-019-00391-5
7 sg:pub.10.1007/s40840-017-0553-1
8 schema:datePublished 2021-09-08
9 schema:datePublishedReg 2021-09-08
10 schema:description In this paper, we study a special class of ZpZp[u]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {Z}}_p{\mathbb {Z}}_p[u]$$\end{document}-additive code CL\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_L$$\end{document} defined in terms of the down-set, where u2=u\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u^2=u$$\end{document} and p is an odd prime. By a proper choice of the down-set, we determine the weight distribution of the additive code CL\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_L$$\end{document}. In particular, we obtain several infinite families of minimal and optimal few-weight p-codes via the Gray map, and these codes can be applied to secret sharing schemes.
11 schema:genre article
12 schema:inLanguage en
13 schema:isAccessibleForFree false
14 schema:isPartOf sg:journal.1136398
15 schema:keywords Gray map
16 U2
18 choice
19 class
20 code
21 distribution
22 family
23 infinite family
24 maps
25 odd prime
26 paper
27 primes
28 proper choice
29 scheme
30 secret sharing scheme
31 set
32 sharing scheme
33 special class
34 terms
35 weight
36 weight P
37 weight distribution
38 schema:name Few-weight ZpZp[u]-additive codes from down-sets
39 schema:pagination 1-8
41 Nf99cc21e6fa3486397d2b99de2e68e37
42 schema:sameAs https://app.dimensions.ai/details/publication/pub.1140944115
43 https://doi.org/10.1007/s12190-021-01594-x
44 schema:sdDatePublished 2022-01-01T19:02
47 schema:url https://doi.org/10.1007/s12190-021-01594-x
49 sgo:sdDataset articles
50 rdf:type schema:ScholarlyArticle
51 N4770ef0b051d47acade63902ce964cab schema:name Springer Nature - SN SciGraph project
52 rdf:type schema:Organization
54 schema:value pub.1140944115
55 rdf:type schema:PropertyValue
56 N885eafc77c4641b4b0bc40f8551e4522 rdf:first sg:person.012012432235.16
57 rdf:rest rdf:nil
58 N8ed11659955d43e6b218978c6e15fcce rdf:first sg:person.016326742634.42
59 rdf:rest N885eafc77c4641b4b0bc40f8551e4522
60 Nf99cc21e6fa3486397d2b99de2e68e37 schema:name doi
61 schema:value 10.1007/s12190-021-01594-x
62 rdf:type schema:PropertyValue
63 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
64 schema:name Mathematical Sciences
65 rdf:type schema:DefinedTerm
66 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
67 schema:name Information and Computing Sciences
68 rdf:type schema:DefinedTerm
69 sg:journal.1136398 schema:issn 1598-5865
70 1865-2085
71 schema:name Journal of Applied Mathematics and Computing
72 schema:publisher Springer Nature
73 rdf:type schema:Periodical
74 sg:person.012012432235.16 schema:affiliation grid-institutes:grid.252245.6
75 schema:familyName Shi
76 schema:givenName Minjia
77 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012012432235.16
78 rdf:type schema:Person
79 sg:person.016326742634.42 schema:affiliation grid-institutes:grid.252245.6
80 schema:familyName Wang
81 schema:givenName Shukai
82 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016326742634.42
83 rdf:type schema:Person
84 sg:pub.10.1007/s00200-017-0345-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092340940
85 https://doi.org/10.1007/s00200-017-0345-8
86 rdf:type schema:CreativeWork
87 sg:pub.10.1007/s10623-017-0442-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092948267
88 https://doi.org/10.1007/s10623-017-0442-5
89 rdf:type schema:CreativeWork
90 sg:pub.10.1007/s12095-019-00391-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1120333610
91 https://doi.org/10.1007/s12095-019-00391-5
92 rdf:type schema:CreativeWork
93 sg:pub.10.1007/s40840-017-0553-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092416652
94 https://doi.org/10.1007/s40840-017-0553-1
95 rdf:type schema:CreativeWork
96 grid-institutes:grid.252245.6 schema:alternateName Key Laboratory of Intelligent Computing and Signal Processing, Ministry of Education, School of Mathematical Sciences, Anhui University, 230601, Hefei, China
97 schema:name Key Laboratory of Intelligent Computing and Signal Processing, Ministry of Education, School of Mathematical Sciences, Anhui University, 230601, Hefei, China
98 rdf:type schema:Organization