Some inequalities and convergence theorems for Choquet integrals View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2009-11-06

AUTHORS

Rui-Sheng Wang

ABSTRACT

Fuzzy measure (or non-additive measure), which has been comprehensively investigated, is a generalization of additive probability measure. Several important kinds of non-additive integrals have been built on it. Integral inequalities play important roles in classical probability and measure theory. In this paper, we discuss some of these inequalities for one kind of non-additive integrals—Choquet integral, including Markov type inequality, Jensen type inequality, Hölder type inequality and Minkowski type inequality. As applications of these inequalities, we also present several convergence concepts and convergence theorems as complements to Choquet integral theory. More... »

PAGES

305-321

References to SciGraph publications

  • 1992. Fuzzy Measure Theory in NONE
  • 1994. Non-Additive Measure and Integral in NONE
  • 2008-09-30. On the properties of sequences of fuzzy-valued Choquet integrable functions in FUZZY OPTIMIZATION AND DECISION MAKING
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s12190-009-0358-y

    DOI

    http://dx.doi.org/10.1007/s12190-009-0358-y

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1022106337


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "School of Information, Renmin University of China, 100872, Beijing, China", 
              "id": "http://www.grid.ac/institutes/grid.24539.39", 
              "name": [
                "School of Information, Renmin University of China, 100872, Beijing, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wang", 
            "givenName": "Rui-Sheng", 
            "id": "sg:person.07700443266.88", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07700443266.88"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/978-1-4757-5303-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004678383", 
              "https://doi.org/10.1007/978-1-4757-5303-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10700-008-9040-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041254630", 
              "https://doi.org/10.1007/s10700-008-9040-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-94-017-2434-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025989515", 
              "https://doi.org/10.1007/978-94-017-2434-0"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2009-11-06", 
        "datePublishedReg": "2009-11-06", 
        "description": "Fuzzy measure (or non-additive measure), which has been comprehensively investigated, is a generalization of additive probability measure. Several important kinds of non-additive integrals have been built on it. Integral inequalities play important roles in classical probability and measure theory. In this paper, we discuss some of these inequalities for one kind of non-additive integrals\u2014Choquet integral, including Markov type inequality, Jensen type inequality, H\u00f6lder type inequality and Minkowski type inequality. As applications of these inequalities, we also present several convergence concepts and convergence theorems as complements to Choquet integral theory.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s12190-009-0358-y", 
        "inLanguage": "en", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1136398", 
            "issn": [
              "1598-5865", 
              "1865-2085"
            ], 
            "name": "Journal of Applied Mathematics and Computing", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1-2", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "35"
          }
        ], 
        "keywords": [
          "type inequalities", 
          "convergence theorem", 
          "non-additive integrals", 
          "Markov type inequalities", 
          "additive probability measure", 
          "Minkowski type inequalities", 
          "Jensen type inequality", 
          "classical probability", 
          "probability measure", 
          "measure theory", 
          "integral inequality", 
          "convergence concept", 
          "integral theory", 
          "fuzzy measures", 
          "integrals", 
          "inequality", 
          "theorem", 
          "Choquet integral", 
          "H\u00f6lder type inequality", 
          "theory", 
          "important kind", 
          "generalization", 
          "probability", 
          "kind", 
          "applications", 
          "measures", 
          "concept", 
          "complement", 
          "important role", 
          "role", 
          "paper", 
          "non-additive integrals\u2014Choquet integral", 
          "integrals\u2014Choquet integral", 
          "Choquet integral theory"
        ], 
        "name": "Some inequalities and convergence theorems for Choquet integrals", 
        "pagination": "305-321", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1022106337"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s12190-009-0358-y"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s12190-009-0358-y", 
          "https://app.dimensions.ai/details/publication/pub.1022106337"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2021-12-01T19:22", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_491.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s12190-009-0358-y"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12190-009-0358-y'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12190-009-0358-y'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12190-009-0358-y'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12190-009-0358-y'


     

    This table displays all metadata directly associated to this object as RDF triples.

    104 TRIPLES      22 PREDICATES      62 URIs      51 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s12190-009-0358-y schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author Nbca9b3d1788447beb389dd59e0d427d5
    4 schema:citation sg:pub.10.1007/978-1-4757-5303-5
    5 sg:pub.10.1007/978-94-017-2434-0
    6 sg:pub.10.1007/s10700-008-9040-3
    7 schema:datePublished 2009-11-06
    8 schema:datePublishedReg 2009-11-06
    9 schema:description Fuzzy measure (or non-additive measure), which has been comprehensively investigated, is a generalization of additive probability measure. Several important kinds of non-additive integrals have been built on it. Integral inequalities play important roles in classical probability and measure theory. In this paper, we discuss some of these inequalities for one kind of non-additive integrals—Choquet integral, including Markov type inequality, Jensen type inequality, Hölder type inequality and Minkowski type inequality. As applications of these inequalities, we also present several convergence concepts and convergence theorems as complements to Choquet integral theory.
    10 schema:genre article
    11 schema:inLanguage en
    12 schema:isAccessibleForFree false
    13 schema:isPartOf N7f5505a561ee46d59d32a397ee153da4
    14 N825e898134254a2abe8dec79a726257e
    15 sg:journal.1136398
    16 schema:keywords Choquet integral
    17 Choquet integral theory
    18 Hölder type inequality
    19 Jensen type inequality
    20 Markov type inequalities
    21 Minkowski type inequalities
    22 additive probability measure
    23 applications
    24 classical probability
    25 complement
    26 concept
    27 convergence concept
    28 convergence theorem
    29 fuzzy measures
    30 generalization
    31 important kind
    32 important role
    33 inequality
    34 integral inequality
    35 integral theory
    36 integrals
    37 integrals—Choquet integral
    38 kind
    39 measure theory
    40 measures
    41 non-additive integrals
    42 non-additive integrals—Choquet integral
    43 paper
    44 probability
    45 probability measure
    46 role
    47 theorem
    48 theory
    49 type inequalities
    50 schema:name Some inequalities and convergence theorems for Choquet integrals
    51 schema:pagination 305-321
    52 schema:productId N3890fb3ed26c46ee9c48251dccfce5d3
    53 Na83a86f3aa8140a4bba55dfe3958a83c
    54 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022106337
    55 https://doi.org/10.1007/s12190-009-0358-y
    56 schema:sdDatePublished 2021-12-01T19:22
    57 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    58 schema:sdPublisher Nb6b4f6016a06424d9a9000ba51db2026
    59 schema:url https://doi.org/10.1007/s12190-009-0358-y
    60 sgo:license sg:explorer/license/
    61 sgo:sdDataset articles
    62 rdf:type schema:ScholarlyArticle
    63 N3890fb3ed26c46ee9c48251dccfce5d3 schema:name doi
    64 schema:value 10.1007/s12190-009-0358-y
    65 rdf:type schema:PropertyValue
    66 N7f5505a561ee46d59d32a397ee153da4 schema:volumeNumber 35
    67 rdf:type schema:PublicationVolume
    68 N825e898134254a2abe8dec79a726257e schema:issueNumber 1-2
    69 rdf:type schema:PublicationIssue
    70 Na83a86f3aa8140a4bba55dfe3958a83c schema:name dimensions_id
    71 schema:value pub.1022106337
    72 rdf:type schema:PropertyValue
    73 Nb6b4f6016a06424d9a9000ba51db2026 schema:name Springer Nature - SN SciGraph project
    74 rdf:type schema:Organization
    75 Nbca9b3d1788447beb389dd59e0d427d5 rdf:first sg:person.07700443266.88
    76 rdf:rest rdf:nil
    77 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    78 schema:name Mathematical Sciences
    79 rdf:type schema:DefinedTerm
    80 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    81 schema:name Pure Mathematics
    82 rdf:type schema:DefinedTerm
    83 sg:journal.1136398 schema:issn 1598-5865
    84 1865-2085
    85 schema:name Journal of Applied Mathematics and Computing
    86 schema:publisher Springer Nature
    87 rdf:type schema:Periodical
    88 sg:person.07700443266.88 schema:affiliation grid-institutes:grid.24539.39
    89 schema:familyName Wang
    90 schema:givenName Rui-Sheng
    91 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07700443266.88
    92 rdf:type schema:Person
    93 sg:pub.10.1007/978-1-4757-5303-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004678383
    94 https://doi.org/10.1007/978-1-4757-5303-5
    95 rdf:type schema:CreativeWork
    96 sg:pub.10.1007/978-94-017-2434-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025989515
    97 https://doi.org/10.1007/978-94-017-2434-0
    98 rdf:type schema:CreativeWork
    99 sg:pub.10.1007/s10700-008-9040-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041254630
    100 https://doi.org/10.1007/s10700-008-9040-3
    101 rdf:type schema:CreativeWork
    102 grid-institutes:grid.24539.39 schema:alternateName School of Information, Renmin University of China, 100872, Beijing, China
    103 schema:name School of Information, Renmin University of China, 100872, Beijing, China
    104 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...