Predictive value of clinical examination parameters for cardiovascular adverse events during treatment of chronic myeloid leukemia with tyrosine kinase inhibitors View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2021-11-17

AUTHORS

Mika Nakamae, Hirohisa Nakamae, Mika Hashimoto, Hideo Koh, Yasuhiro Nakashima, Asao Hirose, Masayuki Hino

ABSTRACT

Treatment of chronic myelogenous leukemia (CML) requires management of long-term use of tyrosine kinase inhibitors (TKIs). Although cardiovascular adverse events (CAEs) caused by off-target effects of TKIs can be life-threatening, the optimal method of monitoring for CAEs has not been established. Here, we comprehensively evaluated the clinical utility of various cardiovascular parameters, including ankle-brachial blood pressure index (ABI), cardiac ankle vascular index (CAVI), and carotid ultrasonography and electrocardiogram measurements, for monitoring and predicting CAEs in 74 patients with CML receiving TKIs. Based on concordance statistics, the predictive value of established risk factor models was significantly improved by addition of both ABI and CAVI, as follows: model 1 (hypertension, smoking history, and dyslipidemia), 0.680 versus 0.817 (p = 0.041); model 2 (hypertension, dyslipidemia, and diabetes mellitus), 0.685 vs. 0.830 (p = 0.047); and model 3 (age, hypertension, dyslipidemia and diabetes mellitus) 0.737 versus 0.818 (p = 0.044). However, no single cardiovascular parameter independently improved the predictive value of established risk factor models. In conclusion, addition of combined assessment of ABI and CAVI to established risk factors can improve prediction of future CAEs and may enable better clinical management of patients with CML receiving TKIs. More... »

PAGES

329-335

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s12185-021-03259-8

DOI

http://dx.doi.org/10.1007/s12185-021-03259-8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1142633138

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/34787835


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Cardiorespiratory Medicine and Haematology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adult", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged, 80 and over", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Ankle Brachial Index", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cardiovascular Diseases", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Carotid Arteries", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Electrocardiography", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Heart Disease Risk Factors", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Leukemia, Myelogenous, Chronic, BCR-ABL Positive", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Monitoring, Physiologic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Predictive Value of Tests", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Protein Kinase Inhibitors", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Protein-Tyrosine Kinases", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Ultrasonography", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Young Adult", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Clinical Laboratory, Osaka City University Hospital, 1-5-7 Asahi-machi, Abeno-ku, 545-8586, Osaka, Japan", 
          "id": "http://www.grid.ac/institutes/grid.470114.7", 
          "name": [
            "Hematology, Graduate School of Medicine, Osaka City University, 1-4-3 Asahi-machi, Abeno-ku, 545-8585, Osaka, Japan", 
            "Department of Laboratory Medicine and Medical Informatics, Graduate School of Medicine, Osaka City University, 1-4-3 Asahi-machi, Abeno-ku, 545-8585, Osaka, Japan", 
            "Department of Clinical Laboratory, Osaka City University Hospital, 1-5-7 Asahi-machi, Abeno-ku, 545-8586, Osaka, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nakamae", 
        "givenName": "Mika", 
        "id": "sg:person.01344167555.69", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01344167555.69"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hematology, Graduate School of Medicine, Osaka City University, 1-4-3 Asahi-machi, Abeno-ku, 545-8585, Osaka, Japan", 
          "id": "http://www.grid.ac/institutes/grid.261445.0", 
          "name": [
            "Hematology, Graduate School of Medicine, Osaka City University, 1-4-3 Asahi-machi, Abeno-ku, 545-8585, Osaka, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nakamae", 
        "givenName": "Hirohisa", 
        "id": "sg:person.01014223462.98", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01014223462.98"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Clinical Laboratory, Osaka City University Hospital, 1-5-7 Asahi-machi, Abeno-ku, 545-8586, Osaka, Japan", 
          "id": "http://www.grid.ac/institutes/grid.470114.7", 
          "name": [
            "Department of Clinical Laboratory, Osaka City University Hospital, 1-5-7 Asahi-machi, Abeno-ku, 545-8586, Osaka, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hashimoto", 
        "givenName": "Mika", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hematology, Graduate School of Medicine, Osaka City University, 1-4-3 Asahi-machi, Abeno-ku, 545-8585, Osaka, Japan", 
          "id": "http://www.grid.ac/institutes/grid.261445.0", 
          "name": [
            "Hematology, Graduate School of Medicine, Osaka City University, 1-4-3 Asahi-machi, Abeno-ku, 545-8585, Osaka, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Koh", 
        "givenName": "Hideo", 
        "id": "sg:person.01224261751.45", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01224261751.45"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hematology, Graduate School of Medicine, Osaka City University, 1-4-3 Asahi-machi, Abeno-ku, 545-8585, Osaka, Japan", 
          "id": "http://www.grid.ac/institutes/grid.261445.0", 
          "name": [
            "Hematology, Graduate School of Medicine, Osaka City University, 1-4-3 Asahi-machi, Abeno-ku, 545-8585, Osaka, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nakashima", 
        "givenName": "Yasuhiro", 
        "id": "sg:person.013660263332.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013660263332.01"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hematology, Graduate School of Medicine, Osaka City University, 1-4-3 Asahi-machi, Abeno-ku, 545-8585, Osaka, Japan", 
          "id": "http://www.grid.ac/institutes/grid.261445.0", 
          "name": [
            "Hematology, Graduate School of Medicine, Osaka City University, 1-4-3 Asahi-machi, Abeno-ku, 545-8585, Osaka, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hirose", 
        "givenName": "Asao", 
        "id": "sg:person.01340510351.20", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01340510351.20"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Clinical Laboratory, Osaka City University Hospital, 1-5-7 Asahi-machi, Abeno-ku, 545-8586, Osaka, Japan", 
          "id": "http://www.grid.ac/institutes/grid.470114.7", 
          "name": [
            "Hematology, Graduate School of Medicine, Osaka City University, 1-4-3 Asahi-machi, Abeno-ku, 545-8585, Osaka, Japan", 
            "Department of Laboratory Medicine and Medical Informatics, Graduate School of Medicine, Osaka City University, 1-4-3 Asahi-machi, Abeno-ku, 545-8585, Osaka, Japan", 
            "Department of Clinical Laboratory, Osaka City University Hospital, 1-5-7 Asahi-machi, Abeno-ku, 545-8586, Osaka, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hino", 
        "givenName": "Masayuki", 
        "id": "sg:person.0777446051.79", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0777446051.79"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/s41375-020-01111-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1134383975", 
          "https://doi.org/10.1038/s41375-020-01111-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/leu.2014.342", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039062920", 
          "https://doi.org/10.1038/leu.2014.342"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00277-019-03705-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1113856666", 
          "https://doi.org/10.1007/s00277-019-03705-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/leu.2013.70", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000844374", 
          "https://doi.org/10.1038/leu.2013.70"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/bmt.2012.244", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028358194", 
          "https://doi.org/10.1038/bmt.2012.244"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12872-021-02095-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1138639476", 
          "https://doi.org/10.1186/s12872-021-02095-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12028-013-9873-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035858469", 
          "https://doi.org/10.1007/s12028-013-9873-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/leu.2017.63", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083850241", 
          "https://doi.org/10.1038/leu.2017.63"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2021-11-17", 
    "datePublishedReg": "2021-11-17", 
    "description": "Treatment of chronic myelogenous leukemia (CML) requires management of long-term use of tyrosine kinase inhibitors (TKIs). Although cardiovascular adverse events (CAEs) caused by off-target effects of TKIs can be life-threatening, the optimal method of monitoring for CAEs has not been established. Here, we comprehensively evaluated the clinical utility of various cardiovascular parameters, including ankle-brachial blood pressure index (ABI), cardiac ankle vascular index (CAVI), and carotid ultrasonography and electrocardiogram measurements, for monitoring and predicting CAEs in 74 patients with CML receiving TKIs. Based on concordance statistics, the predictive value of established risk factor models was significantly improved by addition of both ABI and CAVI, as follows: model 1 (hypertension, smoking history, and dyslipidemia), 0.680 versus 0.817 (p\u2009=\u20090.041); model 2 (hypertension, dyslipidemia, and diabetes mellitus), 0.685 vs. 0.830 (p\u2009=\u20090.047); and model 3 (age, hypertension, dyslipidemia and diabetes mellitus) 0.737 versus 0.818 (p\u2009=\u20090.044). However, no single cardiovascular parameter independently improved the predictive value of established risk factor models. In conclusion, addition of combined assessment of ABI and CAVI to established risk factors can improve prediction of future CAEs and may enable better clinical management of patients with CML receiving TKIs.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s12185-021-03259-8", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1076985", 
        "issn": [
          "0925-5710", 
          "1865-3774"
        ], 
        "name": "International Journal of Hematology", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "115"
      }
    ], 
    "keywords": [
      "ankle-brachial blood pressure index", 
      "cardiovascular adverse events", 
      "tyrosine kinase inhibitors", 
      "chronic myelogenous leukemia", 
      "predictive value", 
      "risk factor model", 
      "adverse events", 
      "cardiovascular parameters", 
      "future cardiovascular adverse events", 
      "kinase inhibitors", 
      "blood pressure index", 
      "clinical examination parameters", 
      "chronic myeloid leukemia", 
      "long-term use", 
      "vascular index", 
      "carotid ultrasonography", 
      "risk factors", 
      "clinical management", 
      "myeloid leukemia", 
      "myelogenous leukemia", 
      "clinical utility", 
      "examination parameters", 
      "concordance statistic", 
      "pressure index", 
      "off-target effects", 
      "patients", 
      "leukemia", 
      "treatment", 
      "inhibitors", 
      "ultrasonography", 
      "optimal method", 
      "index", 
      "management", 
      "Model 2", 
      "Model 1", 
      "events", 
      "Model 3", 
      "conclusion", 
      "monitoring", 
      "assessment", 
      "factors", 
      "addition", 
      "effect", 
      "utility", 
      "values", 
      "use", 
      "factor model", 
      "model", 
      "parameters", 
      "statistics", 
      "method", 
      "measurements", 
      "prediction"
    ], 
    "name": "Predictive value of clinical examination parameters for cardiovascular adverse events during treatment of chronic myeloid leukemia with tyrosine kinase inhibitors", 
    "pagination": "329-335", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1142633138"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s12185-021-03259-8"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "34787835"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s12185-021-03259-8", 
      "https://app.dimensions.ai/details/publication/pub.1142633138"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-11-24T21:07", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221124/entities/gbq_results/article/article_888.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s12185-021-03259-8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12185-021-03259-8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12185-021-03259-8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12185-021-03259-8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12185-021-03259-8'


 

This table displays all metadata directly associated to this object as RDF triples.

268 TRIPLES      21 PREDICATES      105 URIs      89 LITERALS      26 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s12185-021-03259-8 schema:about N1797ad7eb9f24f4490fe9f1f8853ac27
2 N2030201bf5d34762a3cc23bca02afdcd
3 N3231ddac26e14521bda85d2d40358555
4 N337de24bfec84609b56dd038ae04a437
5 N43700368224d42e7874b927a35a474b4
6 N5f6514c8f0434a9eb441f7108380c3c8
7 N5fbf7a6e6d2f478484ca6ffcda1a4824
8 N7af2f3774d7a4af392163f4fdc47f286
9 N803cc71566a445d5968fe3b710742ad3
10 N84a94f70f0184d66b8b06e5c3c222bff
11 N96d6f4371a124f0db7b7eddc25af86ae
12 N98c7bf0197364712bc3f8c683072c65d
13 Na67d6406636d4c58a4a0d38eae62d59a
14 Na96bbccc08b0469e9c0c97b1647d7f98
15 Nb1f6d970ab5148a9807175e6639df228
16 Nc67085fc5b684a5a8004ff3dff9724bf
17 Nd48970656df84e58bafc4641c3b3b963
18 Nf35db0ef3dc648e7b0bc26d5b9cd7c86
19 Nfaeadfe449184670aa59152169c5cca0
20 anzsrc-for:11
21 anzsrc-for:1102
22 schema:author Neddc0dc18a2741f2a76da6460f5f7c52
23 schema:citation sg:pub.10.1007/s00277-019-03705-y
24 sg:pub.10.1007/s12028-013-9873-7
25 sg:pub.10.1038/bmt.2012.244
26 sg:pub.10.1038/leu.2013.70
27 sg:pub.10.1038/leu.2014.342
28 sg:pub.10.1038/leu.2017.63
29 sg:pub.10.1038/s41375-020-01111-2
30 sg:pub.10.1186/s12872-021-02095-2
31 schema:datePublished 2021-11-17
32 schema:datePublishedReg 2021-11-17
33 schema:description Treatment of chronic myelogenous leukemia (CML) requires management of long-term use of tyrosine kinase inhibitors (TKIs). Although cardiovascular adverse events (CAEs) caused by off-target effects of TKIs can be life-threatening, the optimal method of monitoring for CAEs has not been established. Here, we comprehensively evaluated the clinical utility of various cardiovascular parameters, including ankle-brachial blood pressure index (ABI), cardiac ankle vascular index (CAVI), and carotid ultrasonography and electrocardiogram measurements, for monitoring and predicting CAEs in 74 patients with CML receiving TKIs. Based on concordance statistics, the predictive value of established risk factor models was significantly improved by addition of both ABI and CAVI, as follows: model 1 (hypertension, smoking history, and dyslipidemia), 0.680 versus 0.817 (p = 0.041); model 2 (hypertension, dyslipidemia, and diabetes mellitus), 0.685 vs. 0.830 (p = 0.047); and model 3 (age, hypertension, dyslipidemia and diabetes mellitus) 0.737 versus 0.818 (p = 0.044). However, no single cardiovascular parameter independently improved the predictive value of established risk factor models. In conclusion, addition of combined assessment of ABI and CAVI to established risk factors can improve prediction of future CAEs and may enable better clinical management of patients with CML receiving TKIs.
34 schema:genre article
35 schema:isAccessibleForFree false
36 schema:isPartOf N7eb7e7e508ce4d43afe6f68aa2f9f782
37 Nf068bc2afc5b427698ad9d0df2490bfa
38 sg:journal.1076985
39 schema:keywords Model 1
40 Model 2
41 Model 3
42 addition
43 adverse events
44 ankle-brachial blood pressure index
45 assessment
46 blood pressure index
47 cardiovascular adverse events
48 cardiovascular parameters
49 carotid ultrasonography
50 chronic myelogenous leukemia
51 chronic myeloid leukemia
52 clinical examination parameters
53 clinical management
54 clinical utility
55 conclusion
56 concordance statistic
57 effect
58 events
59 examination parameters
60 factor model
61 factors
62 future cardiovascular adverse events
63 index
64 inhibitors
65 kinase inhibitors
66 leukemia
67 long-term use
68 management
69 measurements
70 method
71 model
72 monitoring
73 myelogenous leukemia
74 myeloid leukemia
75 off-target effects
76 optimal method
77 parameters
78 patients
79 prediction
80 predictive value
81 pressure index
82 risk factor model
83 risk factors
84 statistics
85 treatment
86 tyrosine kinase inhibitors
87 ultrasonography
88 use
89 utility
90 values
91 vascular index
92 schema:name Predictive value of clinical examination parameters for cardiovascular adverse events during treatment of chronic myeloid leukemia with tyrosine kinase inhibitors
93 schema:pagination 329-335
94 schema:productId N579558a1a67046cca1905d68465542db
95 N99eb90b094dc46e38d3fcb80c0de424b
96 N9e696799adb148788b859749736cbe9c
97 schema:sameAs https://app.dimensions.ai/details/publication/pub.1142633138
98 https://doi.org/10.1007/s12185-021-03259-8
99 schema:sdDatePublished 2022-11-24T21:07
100 schema:sdLicense https://scigraph.springernature.com/explorer/license/
101 schema:sdPublisher N632d89b514254e44918e7af38f5d9da4
102 schema:url https://doi.org/10.1007/s12185-021-03259-8
103 sgo:license sg:explorer/license/
104 sgo:sdDataset articles
105 rdf:type schema:ScholarlyArticle
106 N1797ad7eb9f24f4490fe9f1f8853ac27 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
107 schema:name Aged, 80 and over
108 rdf:type schema:DefinedTerm
109 N2030201bf5d34762a3cc23bca02afdcd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
110 schema:name Carotid Arteries
111 rdf:type schema:DefinedTerm
112 N3231ddac26e14521bda85d2d40358555 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
113 schema:name Heart Disease Risk Factors
114 rdf:type schema:DefinedTerm
115 N337de24bfec84609b56dd038ae04a437 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
116 schema:name Middle Aged
117 rdf:type schema:DefinedTerm
118 N43700368224d42e7874b927a35a474b4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
119 schema:name Electrocardiography
120 rdf:type schema:DefinedTerm
121 N579558a1a67046cca1905d68465542db schema:name pubmed_id
122 schema:value 34787835
123 rdf:type schema:PropertyValue
124 N5c898d5939a947c7a533adcd53d6f0bc rdf:first sg:person.01014223462.98
125 rdf:rest Nb9e4c44b62774114a27e6a6d7772823f
126 N5cb5be66a9bf47a690a4305fe1a232b8 rdf:first sg:person.013660263332.01
127 rdf:rest N6f1274cb016149d2a893accc7d7c4f46
128 N5f6514c8f0434a9eb441f7108380c3c8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
129 schema:name Male
130 rdf:type schema:DefinedTerm
131 N5fbf7a6e6d2f478484ca6ffcda1a4824 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
132 schema:name Leukemia, Myelogenous, Chronic, BCR-ABL Positive
133 rdf:type schema:DefinedTerm
134 N632d89b514254e44918e7af38f5d9da4 schema:name Springer Nature - SN SciGraph project
135 rdf:type schema:Organization
136 N6f1274cb016149d2a893accc7d7c4f46 rdf:first sg:person.01340510351.20
137 rdf:rest Na4e3e94c2b2e475ba25d4457bd75730f
138 N79326fd466f54110a07c0e4d5e0c1817 schema:affiliation grid-institutes:grid.470114.7
139 schema:familyName Hashimoto
140 schema:givenName Mika
141 rdf:type schema:Person
142 N7af2f3774d7a4af392163f4fdc47f286 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
143 schema:name Ankle Brachial Index
144 rdf:type schema:DefinedTerm
145 N7eb7e7e508ce4d43afe6f68aa2f9f782 schema:volumeNumber 115
146 rdf:type schema:PublicationVolume
147 N803cc71566a445d5968fe3b710742ad3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
148 schema:name Humans
149 rdf:type schema:DefinedTerm
150 N84a94f70f0184d66b8b06e5c3c222bff schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
151 schema:name Aged
152 rdf:type schema:DefinedTerm
153 N94f314c36e434e0b87931d9f95e5045a rdf:first sg:person.01224261751.45
154 rdf:rest N5cb5be66a9bf47a690a4305fe1a232b8
155 N96d6f4371a124f0db7b7eddc25af86ae schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
156 schema:name Monitoring, Physiologic
157 rdf:type schema:DefinedTerm
158 N98c7bf0197364712bc3f8c683072c65d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
159 schema:name Young Adult
160 rdf:type schema:DefinedTerm
161 N99eb90b094dc46e38d3fcb80c0de424b schema:name doi
162 schema:value 10.1007/s12185-021-03259-8
163 rdf:type schema:PropertyValue
164 N9e696799adb148788b859749736cbe9c schema:name dimensions_id
165 schema:value pub.1142633138
166 rdf:type schema:PropertyValue
167 Na4e3e94c2b2e475ba25d4457bd75730f rdf:first sg:person.0777446051.79
168 rdf:rest rdf:nil
169 Na67d6406636d4c58a4a0d38eae62d59a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
170 schema:name Cardiovascular Diseases
171 rdf:type schema:DefinedTerm
172 Na96bbccc08b0469e9c0c97b1647d7f98 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
173 schema:name Predictive Value of Tests
174 rdf:type schema:DefinedTerm
175 Nb1f6d970ab5148a9807175e6639df228 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
176 schema:name Ultrasonography
177 rdf:type schema:DefinedTerm
178 Nb9e4c44b62774114a27e6a6d7772823f rdf:first N79326fd466f54110a07c0e4d5e0c1817
179 rdf:rest N94f314c36e434e0b87931d9f95e5045a
180 Nc67085fc5b684a5a8004ff3dff9724bf schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
181 schema:name Adult
182 rdf:type schema:DefinedTerm
183 Nd48970656df84e58bafc4641c3b3b963 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
184 schema:name Protein-Tyrosine Kinases
185 rdf:type schema:DefinedTerm
186 Neddc0dc18a2741f2a76da6460f5f7c52 rdf:first sg:person.01344167555.69
187 rdf:rest N5c898d5939a947c7a533adcd53d6f0bc
188 Nf068bc2afc5b427698ad9d0df2490bfa schema:issueNumber 3
189 rdf:type schema:PublicationIssue
190 Nf35db0ef3dc648e7b0bc26d5b9cd7c86 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
191 schema:name Female
192 rdf:type schema:DefinedTerm
193 Nfaeadfe449184670aa59152169c5cca0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
194 schema:name Protein Kinase Inhibitors
195 rdf:type schema:DefinedTerm
196 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
197 schema:name Medical and Health Sciences
198 rdf:type schema:DefinedTerm
199 anzsrc-for:1102 schema:inDefinedTermSet anzsrc-for:
200 schema:name Cardiorespiratory Medicine and Haematology
201 rdf:type schema:DefinedTerm
202 sg:journal.1076985 schema:issn 0925-5710
203 1865-3774
204 schema:name International Journal of Hematology
205 schema:publisher Springer Nature
206 rdf:type schema:Periodical
207 sg:person.01014223462.98 schema:affiliation grid-institutes:grid.261445.0
208 schema:familyName Nakamae
209 schema:givenName Hirohisa
210 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01014223462.98
211 rdf:type schema:Person
212 sg:person.01224261751.45 schema:affiliation grid-institutes:grid.261445.0
213 schema:familyName Koh
214 schema:givenName Hideo
215 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01224261751.45
216 rdf:type schema:Person
217 sg:person.01340510351.20 schema:affiliation grid-institutes:grid.261445.0
218 schema:familyName Hirose
219 schema:givenName Asao
220 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01340510351.20
221 rdf:type schema:Person
222 sg:person.01344167555.69 schema:affiliation grid-institutes:grid.470114.7
223 schema:familyName Nakamae
224 schema:givenName Mika
225 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01344167555.69
226 rdf:type schema:Person
227 sg:person.013660263332.01 schema:affiliation grid-institutes:grid.261445.0
228 schema:familyName Nakashima
229 schema:givenName Yasuhiro
230 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013660263332.01
231 rdf:type schema:Person
232 sg:person.0777446051.79 schema:affiliation grid-institutes:grid.470114.7
233 schema:familyName Hino
234 schema:givenName Masayuki
235 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0777446051.79
236 rdf:type schema:Person
237 sg:pub.10.1007/s00277-019-03705-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1113856666
238 https://doi.org/10.1007/s00277-019-03705-y
239 rdf:type schema:CreativeWork
240 sg:pub.10.1007/s12028-013-9873-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035858469
241 https://doi.org/10.1007/s12028-013-9873-7
242 rdf:type schema:CreativeWork
243 sg:pub.10.1038/bmt.2012.244 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028358194
244 https://doi.org/10.1038/bmt.2012.244
245 rdf:type schema:CreativeWork
246 sg:pub.10.1038/leu.2013.70 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000844374
247 https://doi.org/10.1038/leu.2013.70
248 rdf:type schema:CreativeWork
249 sg:pub.10.1038/leu.2014.342 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039062920
250 https://doi.org/10.1038/leu.2014.342
251 rdf:type schema:CreativeWork
252 sg:pub.10.1038/leu.2017.63 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083850241
253 https://doi.org/10.1038/leu.2017.63
254 rdf:type schema:CreativeWork
255 sg:pub.10.1038/s41375-020-01111-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1134383975
256 https://doi.org/10.1038/s41375-020-01111-2
257 rdf:type schema:CreativeWork
258 sg:pub.10.1186/s12872-021-02095-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1138639476
259 https://doi.org/10.1186/s12872-021-02095-2
260 rdf:type schema:CreativeWork
261 grid-institutes:grid.261445.0 schema:alternateName Hematology, Graduate School of Medicine, Osaka City University, 1-4-3 Asahi-machi, Abeno-ku, 545-8585, Osaka, Japan
262 schema:name Hematology, Graduate School of Medicine, Osaka City University, 1-4-3 Asahi-machi, Abeno-ku, 545-8585, Osaka, Japan
263 rdf:type schema:Organization
264 grid-institutes:grid.470114.7 schema:alternateName Department of Clinical Laboratory, Osaka City University Hospital, 1-5-7 Asahi-machi, Abeno-ku, 545-8586, Osaka, Japan
265 schema:name Department of Clinical Laboratory, Osaka City University Hospital, 1-5-7 Asahi-machi, Abeno-ku, 545-8586, Osaka, Japan
266 Department of Laboratory Medicine and Medical Informatics, Graduate School of Medicine, Osaka City University, 1-4-3 Asahi-machi, Abeno-ku, 545-8585, Osaka, Japan
267 Hematology, Graduate School of Medicine, Osaka City University, 1-4-3 Asahi-machi, Abeno-ku, 545-8585, Osaka, Japan
268 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...