Ontology type: schema:ScholarlyArticle
2021-01-31
AUTHORSJason J. Yang, Xiao Hu, Noel G. Boyle, Duc H. Do
ABSTRACTPurpose of ReviewThis review aims to discuss strategies for patient risk stratification of in-hospital cardiac arrest and their challenges and limitations.Recent FindingsIn-hospital cardiac arrest is a significant cause of inpatient mortality, but survival to discharge rates remain low and have not significantly improved in the last three decades. As most patients are in a monitored setting and commonly show clinical deterioration prior to cardiac arrest, early intervention is thought to be the best way to both prevent and improve survival from cardiac arrest. However, detection of an impending cardiac arrest has proven to be particularly challenging.SummaryContemporary methods often rely on score-based early warning systems based on intermittently collected vitals and laboratory values that have seen some success in preventing in-hospital cardiac arrest but are neither sensitive enough to detect impending arrest without significant false alarms nor have the ability to uncover the underlying cause of an imminent arrest. Machine learning–derived early warning systems that utilize temporal trends in vital signs as well as continuous telemetry data are currently being developed. These new approaches show promise in addressing the issue of sensitivity and positive predictive value but require further clinical research and technological advancements. More... »
PAGES5
http://scigraph.springernature.com/pub.10.1007/s12170-021-00667-7
DOIhttp://dx.doi.org/10.1007/s12170-021-00667-7
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1135022161
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Medical and Health Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1102",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Cardiorespiratory Medicine and Haematology",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "UCLA Cardiac Arrhythmia Center, UCLA Health System, David Geffen School of Medicine at UCLA, 100 UCLA Medical Plaza, Suite 660, 90095-7392, Los Angeles, CA, USA",
"id": "http://www.grid.ac/institutes/grid.19006.3e",
"name": [
"UCLA Cardiac Arrhythmia Center, UCLA Health System, David Geffen School of Medicine at UCLA, 100 UCLA Medical Plaza, Suite 660, 90095-7392, Los Angeles, CA, USA"
],
"type": "Organization"
},
"familyName": "Yang",
"givenName": "Jason J.",
"id": "sg:person.07660711543.67",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07660711543.67"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Duke School of Nursing, Duke University, Durham, NC, USA",
"id": "http://www.grid.ac/institutes/grid.26009.3d",
"name": [
"Duke School of Nursing, Duke University, Durham, NC, USA"
],
"type": "Organization"
},
"familyName": "Hu",
"givenName": "Xiao",
"id": "sg:person.01026220275.59",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01026220275.59"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "UCLA Cardiac Arrhythmia Center, UCLA Health System, David Geffen School of Medicine at UCLA, 100 UCLA Medical Plaza, Suite 660, 90095-7392, Los Angeles, CA, USA",
"id": "http://www.grid.ac/institutes/grid.19006.3e",
"name": [
"UCLA Cardiac Arrhythmia Center, UCLA Health System, David Geffen School of Medicine at UCLA, 100 UCLA Medical Plaza, Suite 660, 90095-7392, Los Angeles, CA, USA"
],
"type": "Organization"
},
"familyName": "Boyle",
"givenName": "Noel G.",
"id": "sg:person.01324355355.05",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01324355355.05"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "UCLA Cardiac Arrhythmia Center, UCLA Health System, David Geffen School of Medicine at UCLA, 100 UCLA Medical Plaza, Suite 660, 90095-7392, Los Angeles, CA, USA",
"id": "http://www.grid.ac/institutes/grid.19006.3e",
"name": [
"UCLA Cardiac Arrhythmia Center, UCLA Health System, David Geffen School of Medicine at UCLA, 100 UCLA Medical Plaza, Suite 660, 90095-7392, Los Angeles, CA, USA"
],
"type": "Organization"
},
"familyName": "Do",
"givenName": "Duc H.",
"id": "sg:person.010574404642.99",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010574404642.99"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1186/s13049-020-00791-0",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1131473237",
"https://doi.org/10.1186/s13049-020-00791-0"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1186/cc7998",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1024607698",
"https://doi.org/10.1186/cc7998"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1186/cc10337",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1006357623",
"https://doi.org/10.1186/cc10337"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00134-004-2268-7",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1015206361",
"https://doi.org/10.1007/s00134-004-2268-7"
],
"type": "CreativeWork"
}
],
"datePublished": "2021-01-31",
"datePublishedReg": "2021-01-31",
"description": "Purpose of ReviewThis review aims to discuss strategies for patient risk stratification of in-hospital cardiac arrest and their challenges and limitations.Recent FindingsIn-hospital cardiac arrest is a significant cause of inpatient mortality, but survival to discharge rates remain low and have not significantly improved in the last three decades. As most patients are in a monitored setting and commonly show clinical deterioration prior to cardiac arrest, early intervention is thought to be the best way to both prevent and improve survival from cardiac arrest. However, detection of an impending cardiac arrest has proven to be particularly challenging.SummaryContemporary methods often rely on score-based early warning systems based on intermittently collected vitals and laboratory values that have seen some success in preventing in-hospital cardiac arrest but are neither sensitive enough to detect impending arrest without significant false alarms nor have the ability to uncover the underlying cause of an imminent arrest. Machine learning\u2013derived early warning systems that utilize temporal trends in vital signs as well as continuous telemetry data are currently being developed. These new approaches show promise in addressing the issue of sensitivity and positive predictive value but require further clinical research and technological advancements.",
"genre": "article",
"id": "sg:pub.10.1007/s12170-021-00667-7",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1039476",
"issn": [
"1932-9520",
"1932-9563"
],
"name": "Current Cardiovascular Risk Reports",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "3",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "15"
}
],
"keywords": [
"hospital cardiac arrest",
"cardiac arrest",
"In-Hospital Cardiac Arrest",
"patient risk stratification",
"further clinical research",
"positive predictive value",
"inpatient mortality",
"clinical deterioration",
"most patients",
"risk stratification",
"monitored setting",
"laboratory values",
"predictive value",
"early intervention",
"ReviewThis review",
"significant cause",
"vital signs",
"clinical research",
"underlying cause",
"arrest",
"survival",
"cause",
"temporal trends",
"patients",
"stratification",
"mortality",
"discharge rate",
"intervention",
"significant false alarms",
"signs",
"review",
"vitals",
"setting",
"deterioration",
"sensitivity",
"rate",
"best way",
"issues of sensitivity",
"promise",
"early warning system",
"purpose",
"novel approach",
"ability",
"values",
"data",
"strategies",
"detection",
"success",
"decades",
"technological advancements",
"advancement",
"trends",
"challenges",
"limitations",
"approach",
"warning system",
"system",
"research",
"new approach",
"method",
"issues",
"alarms",
"way",
"false alarms",
"telemetry data"
],
"name": "Novel Approaches to Risk Stratification of In-Hospital Cardiac Arrest",
"pagination": "5",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1135022161"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s12170-021-00667-7"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s12170-021-00667-7",
"https://app.dimensions.ai/details/publication/pub.1135022161"
],
"sdDataset": "articles",
"sdDatePublished": "2022-05-20T07:38",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_895.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1007/s12170-021-00667-7"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12170-021-00667-7'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12170-021-00667-7'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12170-021-00667-7'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12170-021-00667-7'
This table displays all metadata directly associated to this object as RDF triples.
163 TRIPLES
22 PREDICATES
94 URIs
82 LITERALS
6 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/s12170-021-00667-7 | schema:about | anzsrc-for:11 |
2 | ″ | ″ | anzsrc-for:1102 |
3 | ″ | schema:author | N9690914d476943e3b8ba5e7ea7dd29f0 |
4 | ″ | schema:citation | sg:pub.10.1007/s00134-004-2268-7 |
5 | ″ | ″ | sg:pub.10.1186/cc10337 |
6 | ″ | ″ | sg:pub.10.1186/cc7998 |
7 | ″ | ″ | sg:pub.10.1186/s13049-020-00791-0 |
8 | ″ | schema:datePublished | 2021-01-31 |
9 | ″ | schema:datePublishedReg | 2021-01-31 |
10 | ″ | schema:description | Purpose of ReviewThis review aims to discuss strategies for patient risk stratification of in-hospital cardiac arrest and their challenges and limitations.Recent FindingsIn-hospital cardiac arrest is a significant cause of inpatient mortality, but survival to discharge rates remain low and have not significantly improved in the last three decades. As most patients are in a monitored setting and commonly show clinical deterioration prior to cardiac arrest, early intervention is thought to be the best way to both prevent and improve survival from cardiac arrest. However, detection of an impending cardiac arrest has proven to be particularly challenging.SummaryContemporary methods often rely on score-based early warning systems based on intermittently collected vitals and laboratory values that have seen some success in preventing in-hospital cardiac arrest but are neither sensitive enough to detect impending arrest without significant false alarms nor have the ability to uncover the underlying cause of an imminent arrest. Machine learning–derived early warning systems that utilize temporal trends in vital signs as well as continuous telemetry data are currently being developed. These new approaches show promise in addressing the issue of sensitivity and positive predictive value but require further clinical research and technological advancements. |
11 | ″ | schema:genre | article |
12 | ″ | schema:inLanguage | en |
13 | ″ | schema:isAccessibleForFree | false |
14 | ″ | schema:isPartOf | N86dfc7bdf7904fddbcefe6b739d5b2a7 |
15 | ″ | ″ | Na126e151116542a1bbf3e71bd03eed8d |
16 | ″ | ″ | sg:journal.1039476 |
17 | ″ | schema:keywords | In-Hospital Cardiac Arrest |
18 | ″ | ″ | ReviewThis review |
19 | ″ | ″ | ability |
20 | ″ | ″ | advancement |
21 | ″ | ″ | alarms |
22 | ″ | ″ | approach |
23 | ″ | ″ | arrest |
24 | ″ | ″ | best way |
25 | ″ | ″ | cardiac arrest |
26 | ″ | ″ | cause |
27 | ″ | ″ | challenges |
28 | ″ | ″ | clinical deterioration |
29 | ″ | ″ | clinical research |
30 | ″ | ″ | data |
31 | ″ | ″ | decades |
32 | ″ | ″ | detection |
33 | ″ | ″ | deterioration |
34 | ″ | ″ | discharge rate |
35 | ″ | ″ | early intervention |
36 | ″ | ″ | early warning system |
37 | ″ | ″ | false alarms |
38 | ″ | ″ | further clinical research |
39 | ″ | ″ | hospital cardiac arrest |
40 | ″ | ″ | inpatient mortality |
41 | ″ | ″ | intervention |
42 | ″ | ″ | issues |
43 | ″ | ″ | issues of sensitivity |
44 | ″ | ″ | laboratory values |
45 | ″ | ″ | limitations |
46 | ″ | ″ | method |
47 | ″ | ″ | monitored setting |
48 | ″ | ″ | mortality |
49 | ″ | ″ | most patients |
50 | ″ | ″ | new approach |
51 | ″ | ″ | novel approach |
52 | ″ | ″ | patient risk stratification |
53 | ″ | ″ | patients |
54 | ″ | ″ | positive predictive value |
55 | ″ | ″ | predictive value |
56 | ″ | ″ | promise |
57 | ″ | ″ | purpose |
58 | ″ | ″ | rate |
59 | ″ | ″ | research |
60 | ″ | ″ | review |
61 | ″ | ″ | risk stratification |
62 | ″ | ″ | sensitivity |
63 | ″ | ″ | setting |
64 | ″ | ″ | significant cause |
65 | ″ | ″ | significant false alarms |
66 | ″ | ″ | signs |
67 | ″ | ″ | strategies |
68 | ″ | ″ | stratification |
69 | ″ | ″ | success |
70 | ″ | ″ | survival |
71 | ″ | ″ | system |
72 | ″ | ″ | technological advancements |
73 | ″ | ″ | telemetry data |
74 | ″ | ″ | temporal trends |
75 | ″ | ″ | trends |
76 | ″ | ″ | underlying cause |
77 | ″ | ″ | values |
78 | ″ | ″ | vital signs |
79 | ″ | ″ | vitals |
80 | ″ | ″ | warning system |
81 | ″ | ″ | way |
82 | ″ | schema:name | Novel Approaches to Risk Stratification of In-Hospital Cardiac Arrest |
83 | ″ | schema:pagination | 5 |
84 | ″ | schema:productId | N71bdc2c245d748519b8db9ac3a97bdc6 |
85 | ″ | ″ | N9af3912b316c4169af9133634817fbac |
86 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1135022161 |
87 | ″ | ″ | https://doi.org/10.1007/s12170-021-00667-7 |
88 | ″ | schema:sdDatePublished | 2022-05-20T07:38 |
89 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
90 | ″ | schema:sdPublisher | N6db057e26ba3412f8e4d709adfe26592 |
91 | ″ | schema:url | https://doi.org/10.1007/s12170-021-00667-7 |
92 | ″ | sgo:license | sg:explorer/license/ |
93 | ″ | sgo:sdDataset | articles |
94 | ″ | rdf:type | schema:ScholarlyArticle |
95 | N51cf58b264bd4cb4ae025b0823f8a7fb | rdf:first | sg:person.01026220275.59 |
96 | ″ | rdf:rest | Nc4550887be6e4b789f58ddaefb8dcbc6 |
97 | N5cca02c12ddf435b8ba4c95a39e69525 | rdf:first | sg:person.010574404642.99 |
98 | ″ | rdf:rest | rdf:nil |
99 | N6db057e26ba3412f8e4d709adfe26592 | schema:name | Springer Nature - SN SciGraph project |
100 | ″ | rdf:type | schema:Organization |
101 | N71bdc2c245d748519b8db9ac3a97bdc6 | schema:name | doi |
102 | ″ | schema:value | 10.1007/s12170-021-00667-7 |
103 | ″ | rdf:type | schema:PropertyValue |
104 | N86dfc7bdf7904fddbcefe6b739d5b2a7 | schema:issueNumber | 3 |
105 | ″ | rdf:type | schema:PublicationIssue |
106 | N9690914d476943e3b8ba5e7ea7dd29f0 | rdf:first | sg:person.07660711543.67 |
107 | ″ | rdf:rest | N51cf58b264bd4cb4ae025b0823f8a7fb |
108 | N9af3912b316c4169af9133634817fbac | schema:name | dimensions_id |
109 | ″ | schema:value | pub.1135022161 |
110 | ″ | rdf:type | schema:PropertyValue |
111 | Na126e151116542a1bbf3e71bd03eed8d | schema:volumeNumber | 15 |
112 | ″ | rdf:type | schema:PublicationVolume |
113 | Nc4550887be6e4b789f58ddaefb8dcbc6 | rdf:first | sg:person.01324355355.05 |
114 | ″ | rdf:rest | N5cca02c12ddf435b8ba4c95a39e69525 |
115 | anzsrc-for:11 | schema:inDefinedTermSet | anzsrc-for: |
116 | ″ | schema:name | Medical and Health Sciences |
117 | ″ | rdf:type | schema:DefinedTerm |
118 | anzsrc-for:1102 | schema:inDefinedTermSet | anzsrc-for: |
119 | ″ | schema:name | Cardiorespiratory Medicine and Haematology |
120 | ″ | rdf:type | schema:DefinedTerm |
121 | sg:journal.1039476 | schema:issn | 1932-9520 |
122 | ″ | ″ | 1932-9563 |
123 | ″ | schema:name | Current Cardiovascular Risk Reports |
124 | ″ | schema:publisher | Springer Nature |
125 | ″ | rdf:type | schema:Periodical |
126 | sg:person.01026220275.59 | schema:affiliation | grid-institutes:grid.26009.3d |
127 | ″ | schema:familyName | Hu |
128 | ″ | schema:givenName | Xiao |
129 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01026220275.59 |
130 | ″ | rdf:type | schema:Person |
131 | sg:person.010574404642.99 | schema:affiliation | grid-institutes:grid.19006.3e |
132 | ″ | schema:familyName | Do |
133 | ″ | schema:givenName | Duc H. |
134 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010574404642.99 |
135 | ″ | rdf:type | schema:Person |
136 | sg:person.01324355355.05 | schema:affiliation | grid-institutes:grid.19006.3e |
137 | ″ | schema:familyName | Boyle |
138 | ″ | schema:givenName | Noel G. |
139 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01324355355.05 |
140 | ″ | rdf:type | schema:Person |
141 | sg:person.07660711543.67 | schema:affiliation | grid-institutes:grid.19006.3e |
142 | ″ | schema:familyName | Yang |
143 | ″ | schema:givenName | Jason J. |
144 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07660711543.67 |
145 | ″ | rdf:type | schema:Person |
146 | sg:pub.10.1007/s00134-004-2268-7 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1015206361 |
147 | ″ | ″ | https://doi.org/10.1007/s00134-004-2268-7 |
148 | ″ | rdf:type | schema:CreativeWork |
149 | sg:pub.10.1186/cc10337 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1006357623 |
150 | ″ | ″ | https://doi.org/10.1186/cc10337 |
151 | ″ | rdf:type | schema:CreativeWork |
152 | sg:pub.10.1186/cc7998 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1024607698 |
153 | ″ | ″ | https://doi.org/10.1186/cc7998 |
154 | ″ | rdf:type | schema:CreativeWork |
155 | sg:pub.10.1186/s13049-020-00791-0 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1131473237 |
156 | ″ | ″ | https://doi.org/10.1186/s13049-020-00791-0 |
157 | ″ | rdf:type | schema:CreativeWork |
158 | grid-institutes:grid.19006.3e | schema:alternateName | UCLA Cardiac Arrhythmia Center, UCLA Health System, David Geffen School of Medicine at UCLA, 100 UCLA Medical Plaza, Suite 660, 90095-7392, Los Angeles, CA, USA |
159 | ″ | schema:name | UCLA Cardiac Arrhythmia Center, UCLA Health System, David Geffen School of Medicine at UCLA, 100 UCLA Medical Plaza, Suite 660, 90095-7392, Los Angeles, CA, USA |
160 | ″ | rdf:type | schema:Organization |
161 | grid-institutes:grid.26009.3d | schema:alternateName | Duke School of Nursing, Duke University, Durham, NC, USA |
162 | ″ | schema:name | Duke School of Nursing, Duke University, Durham, NC, USA |
163 | ″ | rdf:type | schema:Organization |