Hyperspectral Imaging and Chemometrics for Nondestructive Quantification of Total Volatile Basic Nitrogen in Pacific Oysters (Crassostrea gigas) View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-03

AUTHORS

Lipin Chen, Zhaojie Li, Fanqianhui Yu, Xu Zhang, Yong Xue, Changhu Xue

ABSTRACT

Total volatile basic nitrogen (TVB-N) content is used to evaluate Pacific oyster (Crassostrea gigas) freshness. In this work, hyperspectral imaging (HSI; 400–1000 nm) was used to measure the TVB-N content in Pacific oysters. Accordingly, Pacific oyster samples stored in 15 °C water were assessed at intervals after 1, 3, 5, 7, or 9 days. Minimum noise separation processing of the hyperspectral images was performed before determining the region of interest for data dimension reduction. The effects of multiplicative scatter correction (MSC) on the obtained data were then investigated. To simplify the calibration model, 12 characteristic wavelengths were selected from the Pacific oyster hypercube using the correlation coefficient method. Finally, multiple linear regression (MLR) and back-propagation artificial neural network (BP-ANN) models were built from the selected wavelengths. The experimental results showed that the correlation coefficients between the corrected, predicted, and cross-validated datasets were lower in the MLR model than in the BP-ANN. However, the MLR model outperformed the BP-ANN in terms of the root-mean-square errors of correction, prediction, and interaction verification. Overall, both the MLR and BP-ANN models demonstrated that the combination of HSI with chemometric methods can be used to detect and accurately predict Pacific Oyster freshness during storage. More... »

PAGES

1-12

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s12161-018-1400-1

DOI

http://dx.doi.org/10.1007/s12161-018-1400-1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1110668549


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Ocean University of China", 
          "id": "https://www.grid.ac/institutes/grid.4422.0", 
          "name": [
            "College of Food Science and Engineering, Ocean University of China, 266003, Qingdao, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chen", 
        "givenName": "Lipin", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ocean University of China", 
          "id": "https://www.grid.ac/institutes/grid.4422.0", 
          "name": [
            "College of Food Science and Engineering, Ocean University of China, 266003, Qingdao, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Zhaojie", 
        "id": "sg:person.01062613246.14", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01062613246.14"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ocean University of China", 
          "id": "https://www.grid.ac/institutes/grid.4422.0", 
          "name": [
            "College of Food Science and Engineering, Ocean University of China, 266003, Qingdao, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yu", 
        "givenName": "Fanqianhui", 
        "id": "sg:person.014664015531.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014664015531.15"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ocean University of China", 
          "id": "https://www.grid.ac/institutes/grid.4422.0", 
          "name": [
            "College of Food Science and Engineering, Ocean University of China, 266003, Qingdao, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Xu", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ocean University of China", 
          "id": "https://www.grid.ac/institutes/grid.4422.0", 
          "name": [
            "College of Food Science and Engineering, Ocean University of China, 266003, Qingdao, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xue", 
        "givenName": "Yong", 
        "id": "sg:person.01016707004.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01016707004.44"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ocean University of China", 
          "id": "https://www.grid.ac/institutes/grid.4422.0", 
          "name": [
            "College of Food Science and Engineering, Ocean University of China, 266003, Qingdao, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xue", 
        "givenName": "Changhu", 
        "id": "sg:person.01130726446.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01130726446.37"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s11947-013-1193-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001893241", 
          "https://doi.org/10.1007/s11947-013-1193-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2621.2004.tb11006.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006800608"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2621.2004.tb11006.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006800608"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jfoodeng.2014.02.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008533652"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.chemolab.2011.03.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009835106"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cyto.a.20311", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010057747"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.compag.2011.09.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010340665"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ifset.2012.06.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010947903"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1687-6180-2013-65", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012031722", 
          "https://doi.org/10.1186/1687-6180-2013-65"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.foodchem.2010.11.098", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012784994"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0260-8774(02)00276-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013629247"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0260-8774(02)00276-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013629247"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tifs.2006.06.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016441004"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.talanta.2012.11.042", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017801844"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.foodchem.2005.04.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018397202"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jfoodeng.2013.02.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019500472"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.foodchem.2014.08.124", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019558272"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11947-014-1325-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019817841", 
          "https://doi.org/10.1007/s11947-014-1325-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3382/ps.2010-01239", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022496086"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/10408398.2014.954282", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022717815"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.patcog.2008.11.018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023128776"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.foodres.2013.08.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024945485"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tifs.2006.09.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025106120"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.aca.2011.08.026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027622114"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c4cp04712e", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028253976"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tifs.2015.05.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030042923"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/07038992.2016.1160772", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032722860"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11707-013-0354-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033214195", 
          "https://doi.org/10.1007/s11707-013-0354-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.foodres.2008.12.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034031572"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c3ay40436f", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035400203"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11947-009-0222-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037181602", 
          "https://doi.org/10.1007/s11947-009-0222-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.foodres.2005.07.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037414944"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.lwt.2015.03.052", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038488243"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0309-1740(03)00002-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039262500"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0309-1740(03)00002-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039262500"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jfoodeng.2004.03.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041189733"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.fm.2004.08.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041364283"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.meatsci.2008.06.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043046566"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.meatsci.2011.11.028", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043689900"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.foodchem.2014.11.161", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044486809"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.lwt.2014.02.031", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045188892"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.foodchem.2013.06.073", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045695206"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1016/s1672-6529(08)60008-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046282873", 
          "https://doi.org/10.1016/s1672-6529(08)60008-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1016/s1672-6529(08)60008-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046282873", 
          "https://doi.org/10.1016/s1672-6529(08)60008-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.molstruc.2015.03.067", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046521290"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.foodchem.2015.11.084", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048633731"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tifs.2014.03.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050712913"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.foodchem.2015.01.116", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051399930"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ifset.2012.07.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052450260"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12161-014-9853-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052535126", 
          "https://doi.org/10.1007/s12161-014-9853-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac202598f", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055002229"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac202598f", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055002229"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/jstars.2014.2329390", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061333372"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1255/jnirs.566", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064521365"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1255/jnirs.566", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064521365"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1255/jnirs.894", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064521637"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1255/jnirs.894", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064521637"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.chemosphere.2017.04.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084524543"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12161-017-1050-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092101405", 
          "https://doi.org/10.1007/s12161-017-1050-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.17221/166/2008-cjfs", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100963201"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-03", 
    "datePublishedReg": "2019-03-01", 
    "description": "Total volatile basic nitrogen (TVB-N) content is used to evaluate Pacific oyster (Crassostrea gigas) freshness. In this work, hyperspectral imaging (HSI; 400\u20131000 nm) was used to measure the TVB-N content in Pacific oysters. Accordingly, Pacific oyster samples stored in 15 \u00b0C water were assessed at intervals after 1, 3, 5, 7, or 9 days. Minimum noise separation processing of the hyperspectral images was performed before determining the region of interest for data dimension reduction. The effects of multiplicative scatter correction (MSC) on the obtained data were then investigated. To simplify the calibration model, 12 characteristic wavelengths were selected from the Pacific oyster hypercube using the correlation coefficient method. Finally, multiple linear regression (MLR) and back-propagation artificial neural network (BP-ANN) models were built from the selected wavelengths. The experimental results showed that the correlation coefficients between the corrected, predicted, and cross-validated datasets were lower in the MLR model than in the BP-ANN. However, the MLR model outperformed the BP-ANN in terms of the root-mean-square errors of correction, prediction, and interaction verification. Overall, both the MLR and BP-ANN models demonstrated that the combination of HSI with chemometric methods can be used to detect and accurately predict Pacific Oyster freshness during storage.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s12161-018-1400-1", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1045662", 
        "issn": [
          "1936-9751", 
          "1936-976X"
        ], 
        "name": "Food Analytical Methods", 
        "type": "Periodical"
      }
    ], 
    "name": "Hyperspectral Imaging and Chemometrics for Nondestructive Quantification of Total Volatile Basic Nitrogen in Pacific Oysters (Crassostrea gigas)", 
    "pagination": "1-12", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "40a8c98e42087c9cc5ce5cf85d30449002a0f73e0c470ba456d7a39f3a4f187b"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s12161-018-1400-1"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1110668549"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s12161-018-1400-1", 
      "https://app.dimensions.ai/details/publication/pub.1110668549"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T08:24", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000296_0000000296/records_57234_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs12161-018-1400-1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12161-018-1400-1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12161-018-1400-1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12161-018-1400-1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12161-018-1400-1'


 

This table displays all metadata directly associated to this object as RDF triples.

255 TRIPLES      21 PREDICATES      78 URIs      17 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s12161-018-1400-1 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N0547b37df4924c85881848d9defd00ac
4 schema:citation sg:pub.10.1007/s11707-013-0354-2
5 sg:pub.10.1007/s11947-009-0222-y
6 sg:pub.10.1007/s11947-013-1193-6
7 sg:pub.10.1007/s11947-014-1325-7
8 sg:pub.10.1007/s12161-014-9853-3
9 sg:pub.10.1007/s12161-017-1050-8
10 sg:pub.10.1016/s1672-6529(08)60008-6
11 sg:pub.10.1186/1687-6180-2013-65
12 https://doi.org/10.1002/cyto.a.20311
13 https://doi.org/10.1016/j.aca.2011.08.026
14 https://doi.org/10.1016/j.chemolab.2011.03.002
15 https://doi.org/10.1016/j.chemosphere.2017.04.015
16 https://doi.org/10.1016/j.compag.2011.09.008
17 https://doi.org/10.1016/j.fm.2004.08.009
18 https://doi.org/10.1016/j.foodchem.2005.04.015
19 https://doi.org/10.1016/j.foodchem.2010.11.098
20 https://doi.org/10.1016/j.foodchem.2013.06.073
21 https://doi.org/10.1016/j.foodchem.2014.08.124
22 https://doi.org/10.1016/j.foodchem.2014.11.161
23 https://doi.org/10.1016/j.foodchem.2015.01.116
24 https://doi.org/10.1016/j.foodchem.2015.11.084
25 https://doi.org/10.1016/j.foodres.2005.07.005
26 https://doi.org/10.1016/j.foodres.2008.12.012
27 https://doi.org/10.1016/j.foodres.2013.08.011
28 https://doi.org/10.1016/j.ifset.2012.06.003
29 https://doi.org/10.1016/j.ifset.2012.07.007
30 https://doi.org/10.1016/j.jfoodeng.2004.03.011
31 https://doi.org/10.1016/j.jfoodeng.2013.02.001
32 https://doi.org/10.1016/j.jfoodeng.2014.02.004
33 https://doi.org/10.1016/j.lwt.2014.02.031
34 https://doi.org/10.1016/j.lwt.2015.03.052
35 https://doi.org/10.1016/j.meatsci.2008.06.001
36 https://doi.org/10.1016/j.meatsci.2011.11.028
37 https://doi.org/10.1016/j.molstruc.2015.03.067
38 https://doi.org/10.1016/j.patcog.2008.11.018
39 https://doi.org/10.1016/j.talanta.2012.11.042
40 https://doi.org/10.1016/j.tifs.2006.06.005
41 https://doi.org/10.1016/j.tifs.2006.09.003
42 https://doi.org/10.1016/j.tifs.2014.03.006
43 https://doi.org/10.1016/j.tifs.2015.05.006
44 https://doi.org/10.1016/s0260-8774(02)00276-5
45 https://doi.org/10.1016/s0309-1740(03)00002-0
46 https://doi.org/10.1021/ac202598f
47 https://doi.org/10.1039/c3ay40436f
48 https://doi.org/10.1039/c4cp04712e
49 https://doi.org/10.1080/07038992.2016.1160772
50 https://doi.org/10.1080/10408398.2014.954282
51 https://doi.org/10.1109/jstars.2014.2329390
52 https://doi.org/10.1111/j.1365-2621.2004.tb11006.x
53 https://doi.org/10.1255/jnirs.566
54 https://doi.org/10.1255/jnirs.894
55 https://doi.org/10.17221/166/2008-cjfs
56 https://doi.org/10.3382/ps.2010-01239
57 schema:datePublished 2019-03
58 schema:datePublishedReg 2019-03-01
59 schema:description Total volatile basic nitrogen (TVB-N) content is used to evaluate Pacific oyster (Crassostrea gigas) freshness. In this work, hyperspectral imaging (HSI; 400–1000 nm) was used to measure the TVB-N content in Pacific oysters. Accordingly, Pacific oyster samples stored in 15 °C water were assessed at intervals after 1, 3, 5, 7, or 9 days. Minimum noise separation processing of the hyperspectral images was performed before determining the region of interest for data dimension reduction. The effects of multiplicative scatter correction (MSC) on the obtained data were then investigated. To simplify the calibration model, 12 characteristic wavelengths were selected from the Pacific oyster hypercube using the correlation coefficient method. Finally, multiple linear regression (MLR) and back-propagation artificial neural network (BP-ANN) models were built from the selected wavelengths. The experimental results showed that the correlation coefficients between the corrected, predicted, and cross-validated datasets were lower in the MLR model than in the BP-ANN. However, the MLR model outperformed the BP-ANN in terms of the root-mean-square errors of correction, prediction, and interaction verification. Overall, both the MLR and BP-ANN models demonstrated that the combination of HSI with chemometric methods can be used to detect and accurately predict Pacific Oyster freshness during storage.
60 schema:genre research_article
61 schema:inLanguage en
62 schema:isAccessibleForFree false
63 schema:isPartOf sg:journal.1045662
64 schema:name Hyperspectral Imaging and Chemometrics for Nondestructive Quantification of Total Volatile Basic Nitrogen in Pacific Oysters (Crassostrea gigas)
65 schema:pagination 1-12
66 schema:productId N0c853e885371435188d9adc468295fc3
67 N91fd652684fe4cda86bdea9510cb8113
68 N933b57c48e4d4d2a9a898d0dba8805fd
69 schema:sameAs https://app.dimensions.ai/details/publication/pub.1110668549
70 https://doi.org/10.1007/s12161-018-1400-1
71 schema:sdDatePublished 2019-04-11T08:24
72 schema:sdLicense https://scigraph.springernature.com/explorer/license/
73 schema:sdPublisher N1650523af3f6413ba879edff903118bf
74 schema:url https://link.springer.com/10.1007%2Fs12161-018-1400-1
75 sgo:license sg:explorer/license/
76 sgo:sdDataset articles
77 rdf:type schema:ScholarlyArticle
78 N04b56374b75e454983ba21465b749cdf schema:affiliation https://www.grid.ac/institutes/grid.4422.0
79 schema:familyName Chen
80 schema:givenName Lipin
81 rdf:type schema:Person
82 N0547b37df4924c85881848d9defd00ac rdf:first N04b56374b75e454983ba21465b749cdf
83 rdf:rest Neb36889284e541ac910d1024077cc6d9
84 N0c853e885371435188d9adc468295fc3 schema:name readcube_id
85 schema:value 40a8c98e42087c9cc5ce5cf85d30449002a0f73e0c470ba456d7a39f3a4f187b
86 rdf:type schema:PropertyValue
87 N11e0d1e83b8a43cda879ad6727aea423 rdf:first sg:person.01016707004.44
88 rdf:rest Na6af0b379ce1467d9f916a5a63f65480
89 N1650523af3f6413ba879edff903118bf schema:name Springer Nature - SN SciGraph project
90 rdf:type schema:Organization
91 N3775c8eb49f04a629d00e14daf39f660 schema:affiliation https://www.grid.ac/institutes/grid.4422.0
92 schema:familyName Zhang
93 schema:givenName Xu
94 rdf:type schema:Person
95 N87168b5222004ab9bb1bf6a6c09a3996 rdf:first sg:person.014664015531.15
96 rdf:rest Ne7f9c9d1e08843cbbe319c527a99cdd4
97 N91fd652684fe4cda86bdea9510cb8113 schema:name dimensions_id
98 schema:value pub.1110668549
99 rdf:type schema:PropertyValue
100 N933b57c48e4d4d2a9a898d0dba8805fd schema:name doi
101 schema:value 10.1007/s12161-018-1400-1
102 rdf:type schema:PropertyValue
103 Na6af0b379ce1467d9f916a5a63f65480 rdf:first sg:person.01130726446.37
104 rdf:rest rdf:nil
105 Ne7f9c9d1e08843cbbe319c527a99cdd4 rdf:first N3775c8eb49f04a629d00e14daf39f660
106 rdf:rest N11e0d1e83b8a43cda879ad6727aea423
107 Neb36889284e541ac910d1024077cc6d9 rdf:first sg:person.01062613246.14
108 rdf:rest N87168b5222004ab9bb1bf6a6c09a3996
109 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
110 schema:name Information and Computing Sciences
111 rdf:type schema:DefinedTerm
112 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
113 schema:name Artificial Intelligence and Image Processing
114 rdf:type schema:DefinedTerm
115 sg:journal.1045662 schema:issn 1936-9751
116 1936-976X
117 schema:name Food Analytical Methods
118 rdf:type schema:Periodical
119 sg:person.01016707004.44 schema:affiliation https://www.grid.ac/institutes/grid.4422.0
120 schema:familyName Xue
121 schema:givenName Yong
122 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01016707004.44
123 rdf:type schema:Person
124 sg:person.01062613246.14 schema:affiliation https://www.grid.ac/institutes/grid.4422.0
125 schema:familyName Li
126 schema:givenName Zhaojie
127 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01062613246.14
128 rdf:type schema:Person
129 sg:person.01130726446.37 schema:affiliation https://www.grid.ac/institutes/grid.4422.0
130 schema:familyName Xue
131 schema:givenName Changhu
132 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01130726446.37
133 rdf:type schema:Person
134 sg:person.014664015531.15 schema:affiliation https://www.grid.ac/institutes/grid.4422.0
135 schema:familyName Yu
136 schema:givenName Fanqianhui
137 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014664015531.15
138 rdf:type schema:Person
139 sg:pub.10.1007/s11707-013-0354-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033214195
140 https://doi.org/10.1007/s11707-013-0354-2
141 rdf:type schema:CreativeWork
142 sg:pub.10.1007/s11947-009-0222-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1037181602
143 https://doi.org/10.1007/s11947-009-0222-y
144 rdf:type schema:CreativeWork
145 sg:pub.10.1007/s11947-013-1193-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001893241
146 https://doi.org/10.1007/s11947-013-1193-6
147 rdf:type schema:CreativeWork
148 sg:pub.10.1007/s11947-014-1325-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019817841
149 https://doi.org/10.1007/s11947-014-1325-7
150 rdf:type schema:CreativeWork
151 sg:pub.10.1007/s12161-014-9853-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052535126
152 https://doi.org/10.1007/s12161-014-9853-3
153 rdf:type schema:CreativeWork
154 sg:pub.10.1007/s12161-017-1050-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092101405
155 https://doi.org/10.1007/s12161-017-1050-8
156 rdf:type schema:CreativeWork
157 sg:pub.10.1016/s1672-6529(08)60008-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046282873
158 https://doi.org/10.1016/s1672-6529(08)60008-6
159 rdf:type schema:CreativeWork
160 sg:pub.10.1186/1687-6180-2013-65 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012031722
161 https://doi.org/10.1186/1687-6180-2013-65
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1002/cyto.a.20311 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010057747
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1016/j.aca.2011.08.026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027622114
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1016/j.chemolab.2011.03.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009835106
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1016/j.chemosphere.2017.04.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084524543
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1016/j.compag.2011.09.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010340665
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1016/j.fm.2004.08.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041364283
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1016/j.foodchem.2005.04.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018397202
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1016/j.foodchem.2010.11.098 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012784994
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1016/j.foodchem.2013.06.073 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045695206
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1016/j.foodchem.2014.08.124 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019558272
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1016/j.foodchem.2014.11.161 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044486809
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1016/j.foodchem.2015.01.116 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051399930
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1016/j.foodchem.2015.11.084 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048633731
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1016/j.foodres.2005.07.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037414944
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1016/j.foodres.2008.12.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034031572
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1016/j.foodres.2013.08.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024945485
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1016/j.ifset.2012.06.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010947903
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1016/j.ifset.2012.07.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052450260
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1016/j.jfoodeng.2004.03.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041189733
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1016/j.jfoodeng.2013.02.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019500472
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1016/j.jfoodeng.2014.02.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008533652
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1016/j.lwt.2014.02.031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045188892
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1016/j.lwt.2015.03.052 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038488243
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1016/j.meatsci.2008.06.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043046566
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1016/j.meatsci.2011.11.028 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043689900
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1016/j.molstruc.2015.03.067 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046521290
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1016/j.patcog.2008.11.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023128776
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1016/j.talanta.2012.11.042 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017801844
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1016/j.tifs.2006.06.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016441004
220 rdf:type schema:CreativeWork
221 https://doi.org/10.1016/j.tifs.2006.09.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025106120
222 rdf:type schema:CreativeWork
223 https://doi.org/10.1016/j.tifs.2014.03.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050712913
224 rdf:type schema:CreativeWork
225 https://doi.org/10.1016/j.tifs.2015.05.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030042923
226 rdf:type schema:CreativeWork
227 https://doi.org/10.1016/s0260-8774(02)00276-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013629247
228 rdf:type schema:CreativeWork
229 https://doi.org/10.1016/s0309-1740(03)00002-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039262500
230 rdf:type schema:CreativeWork
231 https://doi.org/10.1021/ac202598f schema:sameAs https://app.dimensions.ai/details/publication/pub.1055002229
232 rdf:type schema:CreativeWork
233 https://doi.org/10.1039/c3ay40436f schema:sameAs https://app.dimensions.ai/details/publication/pub.1035400203
234 rdf:type schema:CreativeWork
235 https://doi.org/10.1039/c4cp04712e schema:sameAs https://app.dimensions.ai/details/publication/pub.1028253976
236 rdf:type schema:CreativeWork
237 https://doi.org/10.1080/07038992.2016.1160772 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032722860
238 rdf:type schema:CreativeWork
239 https://doi.org/10.1080/10408398.2014.954282 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022717815
240 rdf:type schema:CreativeWork
241 https://doi.org/10.1109/jstars.2014.2329390 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061333372
242 rdf:type schema:CreativeWork
243 https://doi.org/10.1111/j.1365-2621.2004.tb11006.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1006800608
244 rdf:type schema:CreativeWork
245 https://doi.org/10.1255/jnirs.566 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064521365
246 rdf:type schema:CreativeWork
247 https://doi.org/10.1255/jnirs.894 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064521637
248 rdf:type schema:CreativeWork
249 https://doi.org/10.17221/166/2008-cjfs schema:sameAs https://app.dimensions.ai/details/publication/pub.1100963201
250 rdf:type schema:CreativeWork
251 https://doi.org/10.3382/ps.2010-01239 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022496086
252 rdf:type schema:CreativeWork
253 https://www.grid.ac/institutes/grid.4422.0 schema:alternateName Ocean University of China
254 schema:name College of Food Science and Engineering, Ocean University of China, 266003, Qingdao, China
255 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...