Meat Consumption and Green Gas Emissions: a Chemometrics Analysis View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-02

AUTHORS

J. Chapman, A. Power, S. Chandra, D. Cozzolino

ABSTRACT

The aim of this study was to relate greenhouse gas emissions (GHGE) from both livestock production (enteric) and agriculture emissions with the consumption of meat from meat producer and importer countries. Data for meat consumption and emission levels of agriculture and livestock production were sourced from the Food and Agriculture Organisation (FAO) database statistics (1961 to 2013). This data is freely available to the public and research community from the FAO webpage. Statistical data was analysed using principal component analysis (PCA), and regression models between GHGE and meat consumption were developed using partial least squares regression (PLS) and validated using cross-validation. Results of this study confirmed observations and anecdotal evidence that enteric and green gas emissions contribute to the perception of meat consumption. Although the results presented in this study are based on the data collected by an international organisation, the authors believe that results from this study can be utilised and incorporated to climate change modelling systems, in order to better understand and define the effect of GHGE on the environmental and economical sustainabilities of the meat production. More... »

PAGES

1-6

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s12161-018-1378-8

DOI

http://dx.doi.org/10.1007/s12161-018-1378-8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1107436655


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "RMIT University", 
          "id": "https://www.grid.ac/institutes/grid.1017.7", 
          "name": [
            "School of Science, RMIT University, GPO Box 2476, 3001, Melbourne, Victoria, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chapman", 
        "givenName": "J.", 
        "id": "sg:person.01267356324.27", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01267356324.27"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Central Queensland University", 
          "id": "https://www.grid.ac/institutes/grid.1023.0", 
          "name": [
            "Agri-Chemistry Group, School of Medical and Applied Sciences, Central Queensland University (CQU), Bruce Highway, 4701, North Rockhampton, Queensland, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Power", 
        "givenName": "A.", 
        "id": "sg:person.014235512401.14", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014235512401.14"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Central Queensland University", 
          "id": "https://www.grid.ac/institutes/grid.1023.0", 
          "name": [
            "Agri-Chemistry Group, School of Medical and Applied Sciences, Central Queensland University (CQU), Bruce Highway, 4701, North Rockhampton, Queensland, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chandra", 
        "givenName": "S.", 
        "id": "sg:person.015630453401.20", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015630453401.20"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Central Queensland University", 
          "id": "https://www.grid.ac/institutes/grid.1023.0", 
          "name": [
            "Agri-Chemistry Group, School of Medical and Applied Sciences, Central Queensland University (CQU), Bruce Highway, 4701, North Rockhampton, Queensland, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cozzolino", 
        "givenName": "D.", 
        "id": "sg:person.0634326312.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0634326312.16"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1088/1748-9326/8/1/015009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002168116"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1300/j064v22n03_10", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005188928"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0140-6736(09)61753-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006069431"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-32059-5_1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006759956", 
          "https://doi.org/10.1007/978-3-319-32059-5_1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0906974107", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008106679"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10584-014-1197-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014601952", 
          "https://doi.org/10.1007/s10584-014-1197-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.agee.2006.12.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014804450"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.enpol.2011.12.054", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019801233"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature10452", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025472352", 
          "https://doi.org/10.1038/nature10452"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.envsci.2014.12.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025575055"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/es4025113", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029212544"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/ejsp.2058", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029523294"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/gcb.13591", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030580511"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1111772", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032385493"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1155/2010/945785", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032815720"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.appet.2015.06.024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033667433"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.meatsci.2014.06.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033937472"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/nu6010289", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035096867"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10460-004-5869-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038105764", 
          "https://doi.org/10.1007/s10460-004-5869-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10460-004-5869-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038105764", 
          "https://doi.org/10.1007/s10460-004-5869-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jclepro.2014.12.075", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041086503"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.meatsci.2014.06.024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041381383"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2147/eect.s58518", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041822740"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1467-3010.2011.01894.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043331822"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3945/ajcn.112.038729", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047191263"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1748-9326/9/11/114005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048692382"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0140-6736(07)61256-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049767407"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/gcb.12589", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050953451"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3945/ajcn.2009.26736aa", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052773273"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3763/ijas.2009.c5007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053367715"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/erae/jbq033", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059570274"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nutrit/nuw043", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059945510"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3354/cr011019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071158904"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3945/an.114.005694", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071754026"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5860/choice.37-0336", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1073359875"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0029665116000653", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083820577"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.meatsci.2017.04.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085117416"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.foodres.2017.06.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085887632"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.gloenvcha.2017.09.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091881892"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/15487733.2013.11908115", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092602447"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jclepro.2018.06.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1104393042"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-02", 
    "datePublishedReg": "2019-02-01", 
    "description": "The aim of this study was to relate greenhouse gas emissions (GHGE) from both livestock production (enteric) and agriculture emissions with the consumption of meat from meat producer and importer countries. Data for meat consumption and emission levels of agriculture and livestock production were sourced from the Food and Agriculture Organisation (FAO) database statistics (1961 to 2013). This data is freely available to the public and research community from the FAO webpage. Statistical data was analysed using principal component analysis (PCA), and regression models between GHGE and meat consumption were developed using partial least squares regression (PLS) and validated using cross-validation. Results of this study confirmed observations and anecdotal evidence that enteric and green gas emissions contribute to the perception of meat consumption. Although the results presented in this study are based on the data collected by an international organisation, the authors believe that results from this study can be utilised and incorporated to climate change modelling systems, in order to better understand and define the effect of GHGE on the environmental and economical sustainabilities of the meat production.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s12161-018-1378-8", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1045662", 
        "issn": [
          "1936-9751", 
          "1936-976X"
        ], 
        "name": "Food Analytical Methods", 
        "type": "Periodical"
      }
    ], 
    "name": "Meat Consumption and Green Gas Emissions: a Chemometrics Analysis", 
    "pagination": "1-6", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "77cba595aa56673505ab19afaa45aba886f29145ba3db42aa3aa5cefeb8f2973"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s12161-018-1378-8"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1107436655"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s12161-018-1378-8", 
      "https://app.dimensions.ai/details/publication/pub.1107436655"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T21:55", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8687_00000605.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs12161-018-1378-8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12161-018-1378-8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12161-018-1378-8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12161-018-1378-8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12161-018-1378-8'


 

This table displays all metadata directly associated to this object as RDF triples.

203 TRIPLES      21 PREDICATES      65 URIs      17 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s12161-018-1378-8 schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author N88d79c8c5a224d5483dcf6173fb9441a
4 schema:citation sg:pub.10.1007/978-3-319-32059-5_1
5 sg:pub.10.1007/s10460-004-5869-4
6 sg:pub.10.1007/s10584-014-1197-x
7 sg:pub.10.1038/nature10452
8 https://doi.org/10.1002/ejsp.2058
9 https://doi.org/10.1016/j.agee.2006.12.004
10 https://doi.org/10.1016/j.appet.2015.06.024
11 https://doi.org/10.1016/j.enpol.2011.12.054
12 https://doi.org/10.1016/j.envsci.2014.12.001
13 https://doi.org/10.1016/j.foodres.2017.06.006
14 https://doi.org/10.1016/j.gloenvcha.2017.09.001
15 https://doi.org/10.1016/j.jclepro.2014.12.075
16 https://doi.org/10.1016/j.jclepro.2018.06.011
17 https://doi.org/10.1016/j.meatsci.2014.06.007
18 https://doi.org/10.1016/j.meatsci.2014.06.024
19 https://doi.org/10.1016/j.meatsci.2017.04.014
20 https://doi.org/10.1016/s0140-6736(07)61256-2
21 https://doi.org/10.1016/s0140-6736(09)61753-0
22 https://doi.org/10.1017/s0029665116000653
23 https://doi.org/10.1021/es4025113
24 https://doi.org/10.1073/pnas.0906974107
25 https://doi.org/10.1080/15487733.2013.11908115
26 https://doi.org/10.1088/1748-9326/8/1/015009
27 https://doi.org/10.1088/1748-9326/9/11/114005
28 https://doi.org/10.1093/erae/jbq033
29 https://doi.org/10.1093/nutrit/nuw043
30 https://doi.org/10.1111/gcb.12589
31 https://doi.org/10.1111/gcb.13591
32 https://doi.org/10.1111/j.1467-3010.2011.01894.x
33 https://doi.org/10.1126/science.1111772
34 https://doi.org/10.1155/2010/945785
35 https://doi.org/10.1300/j064v22n03_10
36 https://doi.org/10.2147/eect.s58518
37 https://doi.org/10.3354/cr011019
38 https://doi.org/10.3390/nu6010289
39 https://doi.org/10.3763/ijas.2009.c5007
40 https://doi.org/10.3945/ajcn.112.038729
41 https://doi.org/10.3945/ajcn.2009.26736aa
42 https://doi.org/10.3945/an.114.005694
43 https://doi.org/10.5860/choice.37-0336
44 schema:datePublished 2019-02
45 schema:datePublishedReg 2019-02-01
46 schema:description The aim of this study was to relate greenhouse gas emissions (GHGE) from both livestock production (enteric) and agriculture emissions with the consumption of meat from meat producer and importer countries. Data for meat consumption and emission levels of agriculture and livestock production were sourced from the Food and Agriculture Organisation (FAO) database statistics (1961 to 2013). This data is freely available to the public and research community from the FAO webpage. Statistical data was analysed using principal component analysis (PCA), and regression models between GHGE and meat consumption were developed using partial least squares regression (PLS) and validated using cross-validation. Results of this study confirmed observations and anecdotal evidence that enteric and green gas emissions contribute to the perception of meat consumption. Although the results presented in this study are based on the data collected by an international organisation, the authors believe that results from this study can be utilised and incorporated to climate change modelling systems, in order to better understand and define the effect of GHGE on the environmental and economical sustainabilities of the meat production.
47 schema:genre research_article
48 schema:inLanguage en
49 schema:isAccessibleForFree false
50 schema:isPartOf sg:journal.1045662
51 schema:name Meat Consumption and Green Gas Emissions: a Chemometrics Analysis
52 schema:pagination 1-6
53 schema:productId N0c44e8bb517440afb7b94b07c9feeafb
54 N0fa30c2484e94fa799e4eebe62e989bc
55 Nc992b832a3b94431baab4f960b637b40
56 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107436655
57 https://doi.org/10.1007/s12161-018-1378-8
58 schema:sdDatePublished 2019-04-10T21:55
59 schema:sdLicense https://scigraph.springernature.com/explorer/license/
60 schema:sdPublisher Na755b584eb7c4e91aff813b4ee2bb5ca
61 schema:url https://link.springer.com/10.1007%2Fs12161-018-1378-8
62 sgo:license sg:explorer/license/
63 sgo:sdDataset articles
64 rdf:type schema:ScholarlyArticle
65 N0c44e8bb517440afb7b94b07c9feeafb schema:name dimensions_id
66 schema:value pub.1107436655
67 rdf:type schema:PropertyValue
68 N0fa30c2484e94fa799e4eebe62e989bc schema:name readcube_id
69 schema:value 77cba595aa56673505ab19afaa45aba886f29145ba3db42aa3aa5cefeb8f2973
70 rdf:type schema:PropertyValue
71 N3886f8dd21f349f0a5d521a144d8e8f1 rdf:first sg:person.014235512401.14
72 rdf:rest N6e081d6647f54bb6be8049678c079cea
73 N6e081d6647f54bb6be8049678c079cea rdf:first sg:person.015630453401.20
74 rdf:rest Nc971e7d750d8451a9b22eb49d0406c14
75 N88d79c8c5a224d5483dcf6173fb9441a rdf:first sg:person.01267356324.27
76 rdf:rest N3886f8dd21f349f0a5d521a144d8e8f1
77 Na755b584eb7c4e91aff813b4ee2bb5ca schema:name Springer Nature - SN SciGraph project
78 rdf:type schema:Organization
79 Nc971e7d750d8451a9b22eb49d0406c14 rdf:first sg:person.0634326312.16
80 rdf:rest rdf:nil
81 Nc992b832a3b94431baab4f960b637b40 schema:name doi
82 schema:value 10.1007/s12161-018-1378-8
83 rdf:type schema:PropertyValue
84 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
85 schema:name Mathematical Sciences
86 rdf:type schema:DefinedTerm
87 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
88 schema:name Statistics
89 rdf:type schema:DefinedTerm
90 sg:journal.1045662 schema:issn 1936-9751
91 1936-976X
92 schema:name Food Analytical Methods
93 rdf:type schema:Periodical
94 sg:person.01267356324.27 schema:affiliation https://www.grid.ac/institutes/grid.1017.7
95 schema:familyName Chapman
96 schema:givenName J.
97 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01267356324.27
98 rdf:type schema:Person
99 sg:person.014235512401.14 schema:affiliation https://www.grid.ac/institutes/grid.1023.0
100 schema:familyName Power
101 schema:givenName A.
102 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014235512401.14
103 rdf:type schema:Person
104 sg:person.015630453401.20 schema:affiliation https://www.grid.ac/institutes/grid.1023.0
105 schema:familyName Chandra
106 schema:givenName S.
107 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015630453401.20
108 rdf:type schema:Person
109 sg:person.0634326312.16 schema:affiliation https://www.grid.ac/institutes/grid.1023.0
110 schema:familyName Cozzolino
111 schema:givenName D.
112 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0634326312.16
113 rdf:type schema:Person
114 sg:pub.10.1007/978-3-319-32059-5_1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006759956
115 https://doi.org/10.1007/978-3-319-32059-5_1
116 rdf:type schema:CreativeWork
117 sg:pub.10.1007/s10460-004-5869-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038105764
118 https://doi.org/10.1007/s10460-004-5869-4
119 rdf:type schema:CreativeWork
120 sg:pub.10.1007/s10584-014-1197-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1014601952
121 https://doi.org/10.1007/s10584-014-1197-x
122 rdf:type schema:CreativeWork
123 sg:pub.10.1038/nature10452 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025472352
124 https://doi.org/10.1038/nature10452
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1002/ejsp.2058 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029523294
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1016/j.agee.2006.12.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014804450
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1016/j.appet.2015.06.024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033667433
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1016/j.enpol.2011.12.054 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019801233
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1016/j.envsci.2014.12.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025575055
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1016/j.foodres.2017.06.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085887632
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1016/j.gloenvcha.2017.09.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091881892
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1016/j.jclepro.2014.12.075 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041086503
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1016/j.jclepro.2018.06.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104393042
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1016/j.meatsci.2014.06.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033937472
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1016/j.meatsci.2014.06.024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041381383
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1016/j.meatsci.2017.04.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085117416
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1016/s0140-6736(07)61256-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049767407
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1016/s0140-6736(09)61753-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006069431
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1017/s0029665116000653 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083820577
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1021/es4025113 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029212544
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1073/pnas.0906974107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008106679
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1080/15487733.2013.11908115 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092602447
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1088/1748-9326/8/1/015009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002168116
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1088/1748-9326/9/11/114005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048692382
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1093/erae/jbq033 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059570274
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1093/nutrit/nuw043 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059945510
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1111/gcb.12589 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050953451
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1111/gcb.13591 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030580511
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1111/j.1467-3010.2011.01894.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1043331822
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1126/science.1111772 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032385493
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1155/2010/945785 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032815720
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1300/j064v22n03_10 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005188928
181 rdf:type schema:CreativeWork
182 https://doi.org/10.2147/eect.s58518 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041822740
183 rdf:type schema:CreativeWork
184 https://doi.org/10.3354/cr011019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071158904
185 rdf:type schema:CreativeWork
186 https://doi.org/10.3390/nu6010289 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035096867
187 rdf:type schema:CreativeWork
188 https://doi.org/10.3763/ijas.2009.c5007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053367715
189 rdf:type schema:CreativeWork
190 https://doi.org/10.3945/ajcn.112.038729 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047191263
191 rdf:type schema:CreativeWork
192 https://doi.org/10.3945/ajcn.2009.26736aa schema:sameAs https://app.dimensions.ai/details/publication/pub.1052773273
193 rdf:type schema:CreativeWork
194 https://doi.org/10.3945/an.114.005694 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071754026
195 rdf:type schema:CreativeWork
196 https://doi.org/10.5860/choice.37-0336 schema:sameAs https://app.dimensions.ai/details/publication/pub.1073359875
197 rdf:type schema:CreativeWork
198 https://www.grid.ac/institutes/grid.1017.7 schema:alternateName RMIT University
199 schema:name School of Science, RMIT University, GPO Box 2476, 3001, Melbourne, Victoria, Australia
200 rdf:type schema:Organization
201 https://www.grid.ac/institutes/grid.1023.0 schema:alternateName Central Queensland University
202 schema:name Agri-Chemistry Group, School of Medical and Applied Sciences, Central Queensland University (CQU), Bruce Highway, 4701, North Rockhampton, Queensland, Australia
203 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...