Meat Consumption and Green Gas Emissions: a Chemometrics Analysis View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-02

AUTHORS

J. Chapman, A. Power, S. Chandra, D. Cozzolino

ABSTRACT

The aim of this study was to relate greenhouse gas emissions (GHGE) from both livestock production (enteric) and agriculture emissions with the consumption of meat from meat producer and importer countries. Data for meat consumption and emission levels of agriculture and livestock production were sourced from the Food and Agriculture Organisation (FAO) database statistics (1961 to 2013). This data is freely available to the public and research community from the FAO webpage. Statistical data was analysed using principal component analysis (PCA), and regression models between GHGE and meat consumption were developed using partial least squares regression (PLS) and validated using cross-validation. Results of this study confirmed observations and anecdotal evidence that enteric and green gas emissions contribute to the perception of meat consumption. Although the results presented in this study are based on the data collected by an international organisation, the authors believe that results from this study can be utilised and incorporated to climate change modelling systems, in order to better understand and define the effect of GHGE on the environmental and economical sustainabilities of the meat production. More... »

PAGES

1-6

References to SciGraph publications

  • 2011-10. Solutions for a cultivated planet in NATURE
  • 2014-09. Global and regional trends in greenhouse gas emissions from livestock in CLIMATIC CHANGE
  • 2017. Greenhouse Gas Emissions and Climate Variability: An Overview in QUANTIFICATION OF CLIMATE VARIABILITY, ADAPTATION AND MITIGATION FOR AGRICULTURAL SUSTAINABILITY
  • 2006-03. Luxus Consumption: Wasting Food Resources Through Overeating in AGRICULTURE AND HUMAN VALUES
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s12161-018-1378-8

    DOI

    http://dx.doi.org/10.1007/s12161-018-1378-8

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1107436655


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Statistics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "RMIT University", 
              "id": "https://www.grid.ac/institutes/grid.1017.7", 
              "name": [
                "School of Science, RMIT University, GPO Box 2476, 3001, Melbourne, Victoria, Australia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Chapman", 
            "givenName": "J.", 
            "id": "sg:person.01267356324.27", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01267356324.27"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Central Queensland University", 
              "id": "https://www.grid.ac/institutes/grid.1023.0", 
              "name": [
                "Agri-Chemistry Group, School of Medical and Applied Sciences, Central Queensland University (CQU), Bruce Highway, 4701, North Rockhampton, Queensland, Australia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Power", 
            "givenName": "A.", 
            "id": "sg:person.014235512401.14", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014235512401.14"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Central Queensland University", 
              "id": "https://www.grid.ac/institutes/grid.1023.0", 
              "name": [
                "Agri-Chemistry Group, School of Medical and Applied Sciences, Central Queensland University (CQU), Bruce Highway, 4701, North Rockhampton, Queensland, Australia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Chandra", 
            "givenName": "S.", 
            "id": "sg:person.015630453401.20", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015630453401.20"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Central Queensland University", 
              "id": "https://www.grid.ac/institutes/grid.1023.0", 
              "name": [
                "Agri-Chemistry Group, School of Medical and Applied Sciences, Central Queensland University (CQU), Bruce Highway, 4701, North Rockhampton, Queensland, Australia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Cozzolino", 
            "givenName": "D.", 
            "id": "sg:person.0634326312.16", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0634326312.16"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1088/1748-9326/8/1/015009", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002168116"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1300/j064v22n03_10", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005188928"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0140-6736(09)61753-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006069431"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-319-32059-5_1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006759956", 
              "https://doi.org/10.1007/978-3-319-32059-5_1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.0906974107", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008106679"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10584-014-1197-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014601952", 
              "https://doi.org/10.1007/s10584-014-1197-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.agee.2006.12.004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014804450"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.enpol.2011.12.054", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019801233"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature10452", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025472352", 
              "https://doi.org/10.1038/nature10452"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.envsci.2014.12.001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025575055"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/es4025113", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029212544"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/ejsp.2058", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029523294"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/gcb.13591", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030580511"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1111772", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032385493"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1155/2010/945785", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032815720"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.appet.2015.06.024", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033667433"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.meatsci.2014.06.007", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033937472"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3390/nu6010289", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035096867"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10460-004-5869-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038105764", 
              "https://doi.org/10.1007/s10460-004-5869-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10460-004-5869-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038105764", 
              "https://doi.org/10.1007/s10460-004-5869-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jclepro.2014.12.075", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041086503"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.meatsci.2014.06.024", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041381383"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2147/eect.s58518", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041822740"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1467-3010.2011.01894.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043331822"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3945/ajcn.112.038729", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047191263"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/1748-9326/9/11/114005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048692382"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0140-6736(07)61256-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049767407"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/gcb.12589", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050953451"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3945/ajcn.2009.26736aa", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052773273"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3763/ijas.2009.c5007", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053367715"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/erae/jbq033", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1059570274"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nutrit/nuw043", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1059945510"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3354/cr011019", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1071158904"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3945/an.114.005694", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1071754026"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.5860/choice.37-0336", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1073359875"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1017/s0029665116000653", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1083820577"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.meatsci.2017.04.014", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085117416"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.foodres.2017.06.006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085887632"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.gloenvcha.2017.09.001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091881892"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/15487733.2013.11908115", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092602447"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jclepro.2018.06.011", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1104393042"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-02", 
        "datePublishedReg": "2019-02-01", 
        "description": "The aim of this study was to relate greenhouse gas emissions (GHGE) from both livestock production (enteric) and agriculture emissions with the consumption of meat from meat producer and importer countries. Data for meat consumption and emission levels of agriculture and livestock production were sourced from the Food and Agriculture Organisation (FAO) database statistics (1961 to 2013). This data is freely available to the public and research community from the FAO webpage. Statistical data was analysed using principal component analysis (PCA), and regression models between GHGE and meat consumption were developed using partial least squares regression (PLS) and validated using cross-validation. Results of this study confirmed observations and anecdotal evidence that enteric and green gas emissions contribute to the perception of meat consumption. Although the results presented in this study are based on the data collected by an international organisation, the authors believe that results from this study can be utilised and incorporated to climate change modelling systems, in order to better understand and define the effect of GHGE on the environmental and economical sustainabilities of the meat production.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s12161-018-1378-8", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1045662", 
            "issn": [
              "1936-9751", 
              "1936-976X"
            ], 
            "name": "Food Analytical Methods", 
            "type": "Periodical"
          }
        ], 
        "name": "Meat Consumption and Green Gas Emissions: a Chemometrics Analysis", 
        "pagination": "1-6", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "77cba595aa56673505ab19afaa45aba886f29145ba3db42aa3aa5cefeb8f2973"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s12161-018-1378-8"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1107436655"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s12161-018-1378-8", 
          "https://app.dimensions.ai/details/publication/pub.1107436655"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T21:55", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8687_00000605.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1007%2Fs12161-018-1378-8"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12161-018-1378-8'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12161-018-1378-8'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12161-018-1378-8'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12161-018-1378-8'


     

    This table displays all metadata directly associated to this object as RDF triples.

    203 TRIPLES      21 PREDICATES      65 URIs      17 LITERALS      5 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s12161-018-1378-8 schema:about anzsrc-for:01
    2 anzsrc-for:0104
    3 schema:author N193be687476742f7a2df256b296563de
    4 schema:citation sg:pub.10.1007/978-3-319-32059-5_1
    5 sg:pub.10.1007/s10460-004-5869-4
    6 sg:pub.10.1007/s10584-014-1197-x
    7 sg:pub.10.1038/nature10452
    8 https://doi.org/10.1002/ejsp.2058
    9 https://doi.org/10.1016/j.agee.2006.12.004
    10 https://doi.org/10.1016/j.appet.2015.06.024
    11 https://doi.org/10.1016/j.enpol.2011.12.054
    12 https://doi.org/10.1016/j.envsci.2014.12.001
    13 https://doi.org/10.1016/j.foodres.2017.06.006
    14 https://doi.org/10.1016/j.gloenvcha.2017.09.001
    15 https://doi.org/10.1016/j.jclepro.2014.12.075
    16 https://doi.org/10.1016/j.jclepro.2018.06.011
    17 https://doi.org/10.1016/j.meatsci.2014.06.007
    18 https://doi.org/10.1016/j.meatsci.2014.06.024
    19 https://doi.org/10.1016/j.meatsci.2017.04.014
    20 https://doi.org/10.1016/s0140-6736(07)61256-2
    21 https://doi.org/10.1016/s0140-6736(09)61753-0
    22 https://doi.org/10.1017/s0029665116000653
    23 https://doi.org/10.1021/es4025113
    24 https://doi.org/10.1073/pnas.0906974107
    25 https://doi.org/10.1080/15487733.2013.11908115
    26 https://doi.org/10.1088/1748-9326/8/1/015009
    27 https://doi.org/10.1088/1748-9326/9/11/114005
    28 https://doi.org/10.1093/erae/jbq033
    29 https://doi.org/10.1093/nutrit/nuw043
    30 https://doi.org/10.1111/gcb.12589
    31 https://doi.org/10.1111/gcb.13591
    32 https://doi.org/10.1111/j.1467-3010.2011.01894.x
    33 https://doi.org/10.1126/science.1111772
    34 https://doi.org/10.1155/2010/945785
    35 https://doi.org/10.1300/j064v22n03_10
    36 https://doi.org/10.2147/eect.s58518
    37 https://doi.org/10.3354/cr011019
    38 https://doi.org/10.3390/nu6010289
    39 https://doi.org/10.3763/ijas.2009.c5007
    40 https://doi.org/10.3945/ajcn.112.038729
    41 https://doi.org/10.3945/ajcn.2009.26736aa
    42 https://doi.org/10.3945/an.114.005694
    43 https://doi.org/10.5860/choice.37-0336
    44 schema:datePublished 2019-02
    45 schema:datePublishedReg 2019-02-01
    46 schema:description The aim of this study was to relate greenhouse gas emissions (GHGE) from both livestock production (enteric) and agriculture emissions with the consumption of meat from meat producer and importer countries. Data for meat consumption and emission levels of agriculture and livestock production were sourced from the Food and Agriculture Organisation (FAO) database statistics (1961 to 2013). This data is freely available to the public and research community from the FAO webpage. Statistical data was analysed using principal component analysis (PCA), and regression models between GHGE and meat consumption were developed using partial least squares regression (PLS) and validated using cross-validation. Results of this study confirmed observations and anecdotal evidence that enteric and green gas emissions contribute to the perception of meat consumption. Although the results presented in this study are based on the data collected by an international organisation, the authors believe that results from this study can be utilised and incorporated to climate change modelling systems, in order to better understand and define the effect of GHGE on the environmental and economical sustainabilities of the meat production.
    47 schema:genre research_article
    48 schema:inLanguage en
    49 schema:isAccessibleForFree false
    50 schema:isPartOf sg:journal.1045662
    51 schema:name Meat Consumption and Green Gas Emissions: a Chemometrics Analysis
    52 schema:pagination 1-6
    53 schema:productId N608050ab31a3415fbe84a95709fb9255
    54 Nbe66071b3363414080d0beaea06657dc
    55 Nd550d565063b467e9f60f70e42b2df33
    56 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107436655
    57 https://doi.org/10.1007/s12161-018-1378-8
    58 schema:sdDatePublished 2019-04-10T21:55
    59 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    60 schema:sdPublisher Ndbcdc2fc10f24a77889a85bb3b171e67
    61 schema:url https://link.springer.com/10.1007%2Fs12161-018-1378-8
    62 sgo:license sg:explorer/license/
    63 sgo:sdDataset articles
    64 rdf:type schema:ScholarlyArticle
    65 N193be687476742f7a2df256b296563de rdf:first sg:person.01267356324.27
    66 rdf:rest N1b36c489ac8b4b2597fe5c411252be2a
    67 N1b36c489ac8b4b2597fe5c411252be2a rdf:first sg:person.014235512401.14
    68 rdf:rest N5f3f01408ab44cf282d6b8a8749349f4
    69 N5f3f01408ab44cf282d6b8a8749349f4 rdf:first sg:person.015630453401.20
    70 rdf:rest N926ed835b8d54710aa638f947bdf7e2f
    71 N608050ab31a3415fbe84a95709fb9255 schema:name dimensions_id
    72 schema:value pub.1107436655
    73 rdf:type schema:PropertyValue
    74 N926ed835b8d54710aa638f947bdf7e2f rdf:first sg:person.0634326312.16
    75 rdf:rest rdf:nil
    76 Nbe66071b3363414080d0beaea06657dc schema:name doi
    77 schema:value 10.1007/s12161-018-1378-8
    78 rdf:type schema:PropertyValue
    79 Nd550d565063b467e9f60f70e42b2df33 schema:name readcube_id
    80 schema:value 77cba595aa56673505ab19afaa45aba886f29145ba3db42aa3aa5cefeb8f2973
    81 rdf:type schema:PropertyValue
    82 Ndbcdc2fc10f24a77889a85bb3b171e67 schema:name Springer Nature - SN SciGraph project
    83 rdf:type schema:Organization
    84 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    85 schema:name Mathematical Sciences
    86 rdf:type schema:DefinedTerm
    87 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
    88 schema:name Statistics
    89 rdf:type schema:DefinedTerm
    90 sg:journal.1045662 schema:issn 1936-9751
    91 1936-976X
    92 schema:name Food Analytical Methods
    93 rdf:type schema:Periodical
    94 sg:person.01267356324.27 schema:affiliation https://www.grid.ac/institutes/grid.1017.7
    95 schema:familyName Chapman
    96 schema:givenName J.
    97 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01267356324.27
    98 rdf:type schema:Person
    99 sg:person.014235512401.14 schema:affiliation https://www.grid.ac/institutes/grid.1023.0
    100 schema:familyName Power
    101 schema:givenName A.
    102 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014235512401.14
    103 rdf:type schema:Person
    104 sg:person.015630453401.20 schema:affiliation https://www.grid.ac/institutes/grid.1023.0
    105 schema:familyName Chandra
    106 schema:givenName S.
    107 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015630453401.20
    108 rdf:type schema:Person
    109 sg:person.0634326312.16 schema:affiliation https://www.grid.ac/institutes/grid.1023.0
    110 schema:familyName Cozzolino
    111 schema:givenName D.
    112 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0634326312.16
    113 rdf:type schema:Person
    114 sg:pub.10.1007/978-3-319-32059-5_1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006759956
    115 https://doi.org/10.1007/978-3-319-32059-5_1
    116 rdf:type schema:CreativeWork
    117 sg:pub.10.1007/s10460-004-5869-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038105764
    118 https://doi.org/10.1007/s10460-004-5869-4
    119 rdf:type schema:CreativeWork
    120 sg:pub.10.1007/s10584-014-1197-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1014601952
    121 https://doi.org/10.1007/s10584-014-1197-x
    122 rdf:type schema:CreativeWork
    123 sg:pub.10.1038/nature10452 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025472352
    124 https://doi.org/10.1038/nature10452
    125 rdf:type schema:CreativeWork
    126 https://doi.org/10.1002/ejsp.2058 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029523294
    127 rdf:type schema:CreativeWork
    128 https://doi.org/10.1016/j.agee.2006.12.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014804450
    129 rdf:type schema:CreativeWork
    130 https://doi.org/10.1016/j.appet.2015.06.024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033667433
    131 rdf:type schema:CreativeWork
    132 https://doi.org/10.1016/j.enpol.2011.12.054 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019801233
    133 rdf:type schema:CreativeWork
    134 https://doi.org/10.1016/j.envsci.2014.12.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025575055
    135 rdf:type schema:CreativeWork
    136 https://doi.org/10.1016/j.foodres.2017.06.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085887632
    137 rdf:type schema:CreativeWork
    138 https://doi.org/10.1016/j.gloenvcha.2017.09.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091881892
    139 rdf:type schema:CreativeWork
    140 https://doi.org/10.1016/j.jclepro.2014.12.075 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041086503
    141 rdf:type schema:CreativeWork
    142 https://doi.org/10.1016/j.jclepro.2018.06.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104393042
    143 rdf:type schema:CreativeWork
    144 https://doi.org/10.1016/j.meatsci.2014.06.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033937472
    145 rdf:type schema:CreativeWork
    146 https://doi.org/10.1016/j.meatsci.2014.06.024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041381383
    147 rdf:type schema:CreativeWork
    148 https://doi.org/10.1016/j.meatsci.2017.04.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085117416
    149 rdf:type schema:CreativeWork
    150 https://doi.org/10.1016/s0140-6736(07)61256-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049767407
    151 rdf:type schema:CreativeWork
    152 https://doi.org/10.1016/s0140-6736(09)61753-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006069431
    153 rdf:type schema:CreativeWork
    154 https://doi.org/10.1017/s0029665116000653 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083820577
    155 rdf:type schema:CreativeWork
    156 https://doi.org/10.1021/es4025113 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029212544
    157 rdf:type schema:CreativeWork
    158 https://doi.org/10.1073/pnas.0906974107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008106679
    159 rdf:type schema:CreativeWork
    160 https://doi.org/10.1080/15487733.2013.11908115 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092602447
    161 rdf:type schema:CreativeWork
    162 https://doi.org/10.1088/1748-9326/8/1/015009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002168116
    163 rdf:type schema:CreativeWork
    164 https://doi.org/10.1088/1748-9326/9/11/114005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048692382
    165 rdf:type schema:CreativeWork
    166 https://doi.org/10.1093/erae/jbq033 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059570274
    167 rdf:type schema:CreativeWork
    168 https://doi.org/10.1093/nutrit/nuw043 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059945510
    169 rdf:type schema:CreativeWork
    170 https://doi.org/10.1111/gcb.12589 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050953451
    171 rdf:type schema:CreativeWork
    172 https://doi.org/10.1111/gcb.13591 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030580511
    173 rdf:type schema:CreativeWork
    174 https://doi.org/10.1111/j.1467-3010.2011.01894.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1043331822
    175 rdf:type schema:CreativeWork
    176 https://doi.org/10.1126/science.1111772 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032385493
    177 rdf:type schema:CreativeWork
    178 https://doi.org/10.1155/2010/945785 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032815720
    179 rdf:type schema:CreativeWork
    180 https://doi.org/10.1300/j064v22n03_10 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005188928
    181 rdf:type schema:CreativeWork
    182 https://doi.org/10.2147/eect.s58518 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041822740
    183 rdf:type schema:CreativeWork
    184 https://doi.org/10.3354/cr011019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071158904
    185 rdf:type schema:CreativeWork
    186 https://doi.org/10.3390/nu6010289 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035096867
    187 rdf:type schema:CreativeWork
    188 https://doi.org/10.3763/ijas.2009.c5007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053367715
    189 rdf:type schema:CreativeWork
    190 https://doi.org/10.3945/ajcn.112.038729 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047191263
    191 rdf:type schema:CreativeWork
    192 https://doi.org/10.3945/ajcn.2009.26736aa schema:sameAs https://app.dimensions.ai/details/publication/pub.1052773273
    193 rdf:type schema:CreativeWork
    194 https://doi.org/10.3945/an.114.005694 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071754026
    195 rdf:type schema:CreativeWork
    196 https://doi.org/10.5860/choice.37-0336 schema:sameAs https://app.dimensions.ai/details/publication/pub.1073359875
    197 rdf:type schema:CreativeWork
    198 https://www.grid.ac/institutes/grid.1017.7 schema:alternateName RMIT University
    199 schema:name School of Science, RMIT University, GPO Box 2476, 3001, Melbourne, Victoria, Australia
    200 rdf:type schema:Organization
    201 https://www.grid.ac/institutes/grid.1023.0 schema:alternateName Central Queensland University
    202 schema:name Agri-Chemistry Group, School of Medical and Applied Sciences, Central Queensland University (CQU), Bruce Highway, 4701, North Rockhampton, Queensland, Australia
    203 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...