Quantitative Evaluation of Impact Damage to Apple by Hyperspectral Imaging and Mechanical Parameters View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-09-25

AUTHORS

Duohua Xu, Huaiwen Wang, Hongwei Ji, Xiaochuan Zhang, Camelia Cerbu, Eric Hu, Fuyuan Dong

ABSTRACT

Impact damage of apple was quantitatively investigated by hyperspectral imaging (HSI) technology within the wavelength region of 900–1700 nm. The pressure-sensitive film technique was used to measure damaged area. Statistical analysis shows a significant linear correlation between absorbed energy and damaged area, contact load, and damaged area with coefficients of determination (R2) of 0.93 and 0.92. Then, the quantitative relationships between damaged area, absorbed energy, contact load, undamaged firmness, and spectral data were established by partial least square regression (PLS). The best prediction performance yielded by the PLS model measured by coefficient of determination (RP2) and root mean square errors of prediction (RMSEP) values were 0.8 and 116.73 mm2 for damaged area, 0.89 and 0.075 J for absorbed energy, 0.53 and 67.38 N for contact load, and 0.65 and 19.99 N for undamaged firmness, respectively. The overall results demonstrate the potential of HSI for rapid and nondestructive prediction of impact damage to apples. More... »

PAGES

371-380

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s12161-018-1369-9

DOI

http://dx.doi.org/10.1007/s12161-018-1369-9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1107231882


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0908", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Food Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Tianjin Key Laboratory of Refrigeration Technology, Tianjin University of Commerce, 300134, Tianjin, China", 
          "id": "http://www.grid.ac/institutes/grid.464478.d", 
          "name": [
            "Tianjin Key Laboratory of Refrigeration Technology, Tianjin University of Commerce, 300134, Tianjin, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xu", 
        "givenName": "Duohua", 
        "id": "sg:person.010363660742.11", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010363660742.11"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tianjin Key Laboratory of Refrigeration Technology, Tianjin University of Commerce, 300134, Tianjin, China", 
          "id": "http://www.grid.ac/institutes/grid.464478.d", 
          "name": [
            "Tianjin Key Laboratory of Refrigeration Technology, Tianjin University of Commerce, 300134, Tianjin, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Huaiwen", 
        "id": "sg:person.015210477625.72", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015210477625.72"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tianjin Key Laboratory of Refrigeration Technology, Tianjin University of Commerce, 300134, Tianjin, China", 
          "id": "http://www.grid.ac/institutes/grid.464478.d", 
          "name": [
            "Tianjin Key Laboratory of Refrigeration Technology, Tianjin University of Commerce, 300134, Tianjin, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ji", 
        "givenName": "Hongwei", 
        "id": "sg:person.010765622371.24", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010765622371.24"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tianjin Key Laboratory of Refrigeration Technology, Tianjin University of Commerce, 300134, Tianjin, China", 
          "id": "http://www.grid.ac/institutes/grid.464478.d", 
          "name": [
            "Tianjin Key Laboratory of Refrigeration Technology, Tianjin University of Commerce, 300134, Tianjin, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Xiaochuan", 
        "id": "sg:person.013061710260.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013061710260.03"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Mechanical Engineering, Transilvania University of Brasov, 500036, Brasov, Romania", 
          "id": "http://www.grid.ac/institutes/grid.5120.6", 
          "name": [
            "School of Mechanical Engineering, Transilvania University of Brasov, 500036, Brasov, Romania"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cerbu", 
        "givenName": "Camelia", 
        "id": "sg:person.012733027436.64", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012733027436.64"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Mechanical Engineering, The University of Adelaide, 5005, Adelaide, SA, Australia", 
          "id": "http://www.grid.ac/institutes/grid.1010.0", 
          "name": [
            "School of Mechanical Engineering, The University of Adelaide, 5005, Adelaide, SA, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hu", 
        "givenName": "Eric", 
        "id": "sg:person.011002010067.46", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011002010067.46"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tianjin Key Laboratory of Refrigeration Technology, Tianjin University of Commerce, 300134, Tianjin, China", 
          "id": "http://www.grid.ac/institutes/grid.464478.d", 
          "name": [
            "Tianjin Key Laboratory of Refrigeration Technology, Tianjin University of Commerce, 300134, Tianjin, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dong", 
        "givenName": "Fuyuan", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s11947-011-0585-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018032903", 
          "https://doi.org/10.1007/s11947-011-0585-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11947-014-1357-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041329101", 
          "https://doi.org/10.1007/s11947-014-1357-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12161-015-0164-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037002531", 
          "https://doi.org/10.1007/s12161-015-0164-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12161-015-0097-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002438380", 
          "https://doi.org/10.1007/s12161-015-0097-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12161-015-0153-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009888693", 
          "https://doi.org/10.1007/s12161-015-0153-3"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-09-25", 
    "datePublishedReg": "2018-09-25", 
    "description": "Impact damage of apple was quantitatively investigated by hyperspectral imaging (HSI) technology within the wavelength region of 900\u20131700\u00a0nm. The pressure-sensitive film technique was used to measure damaged area. Statistical analysis shows a significant linear correlation between absorbed energy and damaged area, contact load, and damaged area with coefficients of determination (R2) of 0.93 and 0.92. Then, the quantitative relationships between damaged area, absorbed energy, contact load, undamaged firmness, and spectral data were established by partial least square regression (PLS). The best prediction performance yielded by the PLS model measured by coefficient of determination (RP2) and root mean square errors of prediction (RMSEP) values were 0.8 and 116.73\u00a0mm2 for damaged area, 0.89 and 0.075\u00a0J for absorbed energy, 0.53 and 67.38\u00a0N for contact load, and 0.65 and 19.99\u00a0N for undamaged firmness, respectively. The overall results demonstrate the potential of HSI for rapid and nondestructive prediction of impact damage to apples.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s12161-018-1369-9", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.8124468", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.8132823", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1045662", 
        "issn": [
          "1936-9751", 
          "1936-976X"
        ], 
        "name": "Food Analytical Methods", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "12"
      }
    ], 
    "keywords": [
      "impact damage", 
      "contact load", 
      "mechanical parameters", 
      "pressure-sensitive film technique", 
      "coefficient of determination", 
      "damaged areas", 
      "film technique", 
      "load", 
      "root mean square error", 
      "hyperspectral imaging technology", 
      "mean square error", 
      "wavelength region", 
      "energy", 
      "square error", 
      "nondestructive prediction", 
      "hyperspectral imaging", 
      "coefficient", 
      "quantitative relationship", 
      "better prediction performance", 
      "imaging technology", 
      "prediction value", 
      "partial least squares regression", 
      "quantitative evaluation", 
      "prediction performance", 
      "technology", 
      "performance", 
      "mm2", 
      "damage", 
      "area", 
      "prediction", 
      "parameters", 
      "technique", 
      "determination", 
      "PLS model", 
      "firmness", 
      "model", 
      "error", 
      "overall results", 
      "linear correlation", 
      "least squares regression", 
      "values", 
      "results", 
      "potential", 
      "HSI", 
      "analysis", 
      "squares regression", 
      "region", 
      "evaluation", 
      "data", 
      "imaging", 
      "apples", 
      "statistical analysis", 
      "correlation", 
      "spectral data", 
      "significant linear correlation", 
      "relationship", 
      "regression", 
      "undamaged firmness", 
      "potential of HSI"
    ], 
    "name": "Quantitative Evaluation of Impact Damage to Apple by Hyperspectral Imaging and Mechanical Parameters", 
    "pagination": "371-380", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1107231882"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s12161-018-1369-9"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s12161-018-1369-9", 
      "https://app.dimensions.ai/details/publication/pub.1107231882"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-12-01T19:39", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_764.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s12161-018-1369-9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12161-018-1369-9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12161-018-1369-9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12161-018-1369-9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12161-018-1369-9'


 

This table displays all metadata directly associated to this object as RDF triples.

188 TRIPLES      22 PREDICATES      89 URIs      76 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s12161-018-1369-9 schema:about anzsrc-for:09
2 anzsrc-for:0908
3 schema:author N76a64a5fea4142fca624eb123c2ce522
4 schema:citation sg:pub.10.1007/s11947-011-0585-8
5 sg:pub.10.1007/s11947-014-1357-z
6 sg:pub.10.1007/s12161-015-0097-7
7 sg:pub.10.1007/s12161-015-0153-3
8 sg:pub.10.1007/s12161-015-0164-0
9 schema:datePublished 2018-09-25
10 schema:datePublishedReg 2018-09-25
11 schema:description Impact damage of apple was quantitatively investigated by hyperspectral imaging (HSI) technology within the wavelength region of 900–1700 nm. The pressure-sensitive film technique was used to measure damaged area. Statistical analysis shows a significant linear correlation between absorbed energy and damaged area, contact load, and damaged area with coefficients of determination (R2) of 0.93 and 0.92. Then, the quantitative relationships between damaged area, absorbed energy, contact load, undamaged firmness, and spectral data were established by partial least square regression (PLS). The best prediction performance yielded by the PLS model measured by coefficient of determination (RP2) and root mean square errors of prediction (RMSEP) values were 0.8 and 116.73 mm2 for damaged area, 0.89 and 0.075 J for absorbed energy, 0.53 and 67.38 N for contact load, and 0.65 and 19.99 N for undamaged firmness, respectively. The overall results demonstrate the potential of HSI for rapid and nondestructive prediction of impact damage to apples.
12 schema:genre article
13 schema:inLanguage en
14 schema:isAccessibleForFree false
15 schema:isPartOf N59aec378451f4b9e9c67f8f0faa1dde1
16 Nd50b38ba7b204f89a47fb26352236212
17 sg:journal.1045662
18 schema:keywords HSI
19 PLS model
20 analysis
21 apples
22 area
23 better prediction performance
24 coefficient
25 coefficient of determination
26 contact load
27 correlation
28 damage
29 damaged areas
30 data
31 determination
32 energy
33 error
34 evaluation
35 film technique
36 firmness
37 hyperspectral imaging
38 hyperspectral imaging technology
39 imaging
40 imaging technology
41 impact damage
42 least squares regression
43 linear correlation
44 load
45 mean square error
46 mechanical parameters
47 mm2
48 model
49 nondestructive prediction
50 overall results
51 parameters
52 partial least squares regression
53 performance
54 potential
55 potential of HSI
56 prediction
57 prediction performance
58 prediction value
59 pressure-sensitive film technique
60 quantitative evaluation
61 quantitative relationship
62 region
63 regression
64 relationship
65 results
66 root mean square error
67 significant linear correlation
68 spectral data
69 square error
70 squares regression
71 statistical analysis
72 technique
73 technology
74 undamaged firmness
75 values
76 wavelength region
77 schema:name Quantitative Evaluation of Impact Damage to Apple by Hyperspectral Imaging and Mechanical Parameters
78 schema:pagination 371-380
79 schema:productId N9e0f9fc144e8451a9e5d59b06d9937fe
80 Nc00e1d73c582489386bf705b665081de
81 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107231882
82 https://doi.org/10.1007/s12161-018-1369-9
83 schema:sdDatePublished 2021-12-01T19:39
84 schema:sdLicense https://scigraph.springernature.com/explorer/license/
85 schema:sdPublisher Na74ddf00131040aabde1f8f7c110970c
86 schema:url https://doi.org/10.1007/s12161-018-1369-9
87 sgo:license sg:explorer/license/
88 sgo:sdDataset articles
89 rdf:type schema:ScholarlyArticle
90 N3daa05bf89a544bdb4d6168c50bc911f rdf:first sg:person.011002010067.46
91 rdf:rest Na62c29da478148ed828c7089e1d6478c
92 N3f638ddb7e1f43f2a7e5b1e23f28b986 rdf:first sg:person.012733027436.64
93 rdf:rest N3daa05bf89a544bdb4d6168c50bc911f
94 N455a5f44d2ed4181a9228052d16f7130 rdf:first sg:person.015210477625.72
95 rdf:rest N7c480ad4487743719029805768c90cae
96 N59aec378451f4b9e9c67f8f0faa1dde1 schema:issueNumber 2
97 rdf:type schema:PublicationIssue
98 N76a64a5fea4142fca624eb123c2ce522 rdf:first sg:person.010363660742.11
99 rdf:rest N455a5f44d2ed4181a9228052d16f7130
100 N7c480ad4487743719029805768c90cae rdf:first sg:person.010765622371.24
101 rdf:rest N8b66953a85394afbbb90eb12a89fdaa1
102 N8b66953a85394afbbb90eb12a89fdaa1 rdf:first sg:person.013061710260.03
103 rdf:rest N3f638ddb7e1f43f2a7e5b1e23f28b986
104 N9e0f9fc144e8451a9e5d59b06d9937fe schema:name doi
105 schema:value 10.1007/s12161-018-1369-9
106 rdf:type schema:PropertyValue
107 Na62c29da478148ed828c7089e1d6478c rdf:first Ne087e858fa0745b7a601a4582c90db50
108 rdf:rest rdf:nil
109 Na74ddf00131040aabde1f8f7c110970c schema:name Springer Nature - SN SciGraph project
110 rdf:type schema:Organization
111 Nc00e1d73c582489386bf705b665081de schema:name dimensions_id
112 schema:value pub.1107231882
113 rdf:type schema:PropertyValue
114 Nd50b38ba7b204f89a47fb26352236212 schema:volumeNumber 12
115 rdf:type schema:PublicationVolume
116 Ne087e858fa0745b7a601a4582c90db50 schema:affiliation grid-institutes:grid.464478.d
117 schema:familyName Dong
118 schema:givenName Fuyuan
119 rdf:type schema:Person
120 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
121 schema:name Engineering
122 rdf:type schema:DefinedTerm
123 anzsrc-for:0908 schema:inDefinedTermSet anzsrc-for:
124 schema:name Food Sciences
125 rdf:type schema:DefinedTerm
126 sg:grant.8124468 http://pending.schema.org/fundedItem sg:pub.10.1007/s12161-018-1369-9
127 rdf:type schema:MonetaryGrant
128 sg:grant.8132823 http://pending.schema.org/fundedItem sg:pub.10.1007/s12161-018-1369-9
129 rdf:type schema:MonetaryGrant
130 sg:journal.1045662 schema:issn 1936-9751
131 1936-976X
132 schema:name Food Analytical Methods
133 schema:publisher Springer Nature
134 rdf:type schema:Periodical
135 sg:person.010363660742.11 schema:affiliation grid-institutes:grid.464478.d
136 schema:familyName Xu
137 schema:givenName Duohua
138 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010363660742.11
139 rdf:type schema:Person
140 sg:person.010765622371.24 schema:affiliation grid-institutes:grid.464478.d
141 schema:familyName Ji
142 schema:givenName Hongwei
143 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010765622371.24
144 rdf:type schema:Person
145 sg:person.011002010067.46 schema:affiliation grid-institutes:grid.1010.0
146 schema:familyName Hu
147 schema:givenName Eric
148 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011002010067.46
149 rdf:type schema:Person
150 sg:person.012733027436.64 schema:affiliation grid-institutes:grid.5120.6
151 schema:familyName Cerbu
152 schema:givenName Camelia
153 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012733027436.64
154 rdf:type schema:Person
155 sg:person.013061710260.03 schema:affiliation grid-institutes:grid.464478.d
156 schema:familyName Zhang
157 schema:givenName Xiaochuan
158 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013061710260.03
159 rdf:type schema:Person
160 sg:person.015210477625.72 schema:affiliation grid-institutes:grid.464478.d
161 schema:familyName Wang
162 schema:givenName Huaiwen
163 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015210477625.72
164 rdf:type schema:Person
165 sg:pub.10.1007/s11947-011-0585-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018032903
166 https://doi.org/10.1007/s11947-011-0585-8
167 rdf:type schema:CreativeWork
168 sg:pub.10.1007/s11947-014-1357-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1041329101
169 https://doi.org/10.1007/s11947-014-1357-z
170 rdf:type schema:CreativeWork
171 sg:pub.10.1007/s12161-015-0097-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002438380
172 https://doi.org/10.1007/s12161-015-0097-7
173 rdf:type schema:CreativeWork
174 sg:pub.10.1007/s12161-015-0153-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009888693
175 https://doi.org/10.1007/s12161-015-0153-3
176 rdf:type schema:CreativeWork
177 sg:pub.10.1007/s12161-015-0164-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037002531
178 https://doi.org/10.1007/s12161-015-0164-0
179 rdf:type schema:CreativeWork
180 grid-institutes:grid.1010.0 schema:alternateName School of Mechanical Engineering, The University of Adelaide, 5005, Adelaide, SA, Australia
181 schema:name School of Mechanical Engineering, The University of Adelaide, 5005, Adelaide, SA, Australia
182 rdf:type schema:Organization
183 grid-institutes:grid.464478.d schema:alternateName Tianjin Key Laboratory of Refrigeration Technology, Tianjin University of Commerce, 300134, Tianjin, China
184 schema:name Tianjin Key Laboratory of Refrigeration Technology, Tianjin University of Commerce, 300134, Tianjin, China
185 rdf:type schema:Organization
186 grid-institutes:grid.5120.6 schema:alternateName School of Mechanical Engineering, Transilvania University of Brasov, 500036, Brasov, Romania
187 schema:name School of Mechanical Engineering, Transilvania University of Brasov, 500036, Brasov, Romania
188 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...