A memetic algorithm with extended random path encoding for a closed-loop supply chain model with flexible delivery View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2016-12

AUTHORS

Elham Behmanesh, Jürgen Pannek

ABSTRACT

Logistics network design is a major strategic issue in supply chain management of both forward and reverse flow, which industrial players are forced but not equipped to handle. To avoid sub-optimal solution derived by separated design, we consider an integrated forward reverse logistics network design, which is enriched by using a complete delivery graph. We formulate the cyclic seven-stage logistics network problem as a NP hard mixed integer linear programming model. To find the near optimal solution, we apply a memetic algorithm with a neighborhood search mechanism and a novel chromosome representation including two segments. The power of extended random path-based direct encoding method is shown by a comparison to commercial package in terms of both quality of solution and computational time. We show that the proposed algorithm is able to efficiently find a good solution for the flexible integrated logistics network. More... »

PAGES

22

References to SciGraph publications

  • 2010-03. Reverse logistics network design using simulated annealing in THE INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY
  • 2005-09. A hybrid heuristic algorithm for the multistage supply chain network problem in THE INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY
  • 2006-07. A genetic algorithm for two-stage transportation problem using priority-based encoding in OR SPECTRUM
  • 1999-07. Business case Océ: Reverse logistic network re-design for copiers in OR SPECTRUM
  • 2003-12. Integrated service network design for a cross-docking supply chain network in JOURNAL OF THE OPERATIONAL RESEARCH SOCIETY
  • 1984-03. Optimization by simulated annealing: Quantitative studies in JOURNAL OF STATISTICAL PHYSICS
  • Journal

    TITLE

    Logistics Research

    ISSUE

    1

    VOLUME

    9

    Author Affiliations

    Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s12159-016-0150-y

    DOI

    http://dx.doi.org/10.1007/s12159-016-0150-y

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1026718191


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Applied Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "University of Bremen", 
              "id": "https://www.grid.ac/institutes/grid.7704.4", 
              "name": [
                "International Graduate School for Dynamics in Logistics, University of Bremen, Bremen, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Behmanesh", 
            "givenName": "Elham", 
            "id": "sg:person.014372045716.26", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014372045716.26"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Bremen", 
              "id": "https://www.grid.ac/institutes/grid.7704.4", 
              "name": [
                "Faculty of Production Engineering, University of Bremen, Bremen, Germany", 
                "BIBA Bremer Institut f\u00fcr Produktion und Logistik GmbH, Bremen, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Pannek", 
            "givenName": "J\u00fcrgen", 
            "id": "sg:person.011636674044.68", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011636674044.68"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/j.cor.2005.03.002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003361800"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.resconrec.2008.11.006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004535861"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/00207540902906151", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005314213"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1057/palgrave.jors.2601645", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012712984", 
              "https://doi.org/10.1057/palgrave.jors.2601645"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1937-5956.2001.tb00076.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014384497"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1937-5956.2001.tb00076.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014384497"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.advengsoft.2010.11.001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017273231"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ejor.2009.06.011", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018062843"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01009452", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019054075", 
              "https://doi.org/10.1007/bf01009452"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.cie.2006.07.011", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020085781"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.resconrec.2015.05.014", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020991762"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.cor.2006.12.020", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021662914"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.omega.2010.07.002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022371470"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ejor.2008.05.007", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022529793"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/nav.20262", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023298196"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0377-2217(99)00105-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023578396"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00170-003-2025-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024705552", 
              "https://doi.org/10.1007/s00170-003-2025-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ijpe.2007.01.017", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024925032"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0377-2217(02)00153-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025238018"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00291-005-0029-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025906222", 
              "https://doi.org/10.1007/s00291-005-0029-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00291-005-0029-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025906222", 
              "https://doi.org/10.1007/s00291-005-0029-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.cor.2009.06.001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026728575"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ejor.2004.09.018", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027273938"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.omega.2006.04.014", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028055980"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0360-8352(99)00168-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028399737"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0377-2217(02)00497-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029753191"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0377-2217(02)00497-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029753191"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.omega.2006.11.012", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031319525"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00170-009-2194-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033612165", 
              "https://doi.org/10.1007/s00170-009-2194-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00170-009-2194-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033612165", 
              "https://doi.org/10.1007/s00170-009-2194-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00170-009-2194-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033612165", 
              "https://doi.org/10.1007/s00170-009-2194-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ejor.2011.12.045", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037691979"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.cie.2007.06.022", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039448093"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.resconrec.2010.06.014", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039999443"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.resconrec.2009.06.004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040320650"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jmsy.2010.05.001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040878766"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.cie.2008.09.037", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041803909"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.tre.2006.11.003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042525676"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.tre.2007.04.002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043046857"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ejor.2014.07.012", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043389822"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/07408170490458580", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043845666"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0360-8352(02)00076-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047071293"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1108/09576059910284159", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048748789"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.cor.2009.09.018", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049285439"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ifacol.2016.03.014", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050474540"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ejor.2001.12.001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051088380"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.cie.2006.02.010", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051394213"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s002910050095", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053424667", 
              "https://doi.org/10.1007/s002910050095"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s002910050095", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053424667", 
              "https://doi.org/10.1007/s002910050095"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/4235.661548", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061171986"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1287/ijoc.3.4.307", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064707386"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1287/inte.33.6.57.25183", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064710547"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1504/ijlsm.2007.012070", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1067469876"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.4114/ia.v7i19.721", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1072250641"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/isee.1995.514981", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094572911"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/icec.1998.699754", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1095189656"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2016-12", 
        "datePublishedReg": "2016-12-01", 
        "description": "Logistics network design is a major strategic issue in supply chain management of both forward and reverse flow, which industrial players are forced but not equipped to handle. To avoid sub-optimal solution derived by separated design, we consider an integrated forward reverse logistics network design, which is enriched by using a complete delivery graph. We formulate the cyclic seven-stage logistics network problem as a NP hard mixed integer linear programming model. To find the near optimal solution, we apply a memetic algorithm with a neighborhood search mechanism and a novel chromosome representation including two segments. The power of extended random path-based direct encoding method is shown by a comparison to commercial package in terms of both quality of solution and computational time. We show that the proposed algorithm is able to efficiently find a good solution for the flexible integrated logistics network.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s12159-016-0150-y", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1136819", 
            "issn": [
              "1865-035X", 
              "1865-0368"
            ], 
            "name": "Logistics Research", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "9"
          }
        ], 
        "name": "A memetic algorithm with extended random path encoding for a closed-loop supply chain model with flexible delivery", 
        "pagination": "22", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "7f486dfda5beae6943f07b761e6099203dd464817635d06ef6f660de2f99bbc4"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s12159-016-0150-y"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1026718191"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s12159-016-0150-y", 
          "https://app.dimensions.ai/details/publication/pub.1026718191"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T12:38", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000363_0000000363/records_70043_00000001.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1007%2Fs12159-016-0150-y"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12159-016-0150-y'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12159-016-0150-y'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12159-016-0150-y'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12159-016-0150-y'


     

    This table displays all metadata directly associated to this object as RDF triples.

    226 TRIPLES      21 PREDICATES      77 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s12159-016-0150-y schema:about anzsrc-for:01
    2 anzsrc-for:0102
    3 schema:author Ne52c77c3c6684cab88fa9267a18564a3
    4 schema:citation sg:pub.10.1007/bf01009452
    5 sg:pub.10.1007/s00170-003-2025-z
    6 sg:pub.10.1007/s00170-009-2194-5
    7 sg:pub.10.1007/s00291-005-0029-9
    8 sg:pub.10.1007/s002910050095
    9 sg:pub.10.1057/palgrave.jors.2601645
    10 https://doi.org/10.1002/nav.20262
    11 https://doi.org/10.1016/j.advengsoft.2010.11.001
    12 https://doi.org/10.1016/j.cie.2006.02.010
    13 https://doi.org/10.1016/j.cie.2006.07.011
    14 https://doi.org/10.1016/j.cie.2007.06.022
    15 https://doi.org/10.1016/j.cie.2008.09.037
    16 https://doi.org/10.1016/j.cor.2005.03.002
    17 https://doi.org/10.1016/j.cor.2006.12.020
    18 https://doi.org/10.1016/j.cor.2009.06.001
    19 https://doi.org/10.1016/j.cor.2009.09.018
    20 https://doi.org/10.1016/j.ejor.2001.12.001
    21 https://doi.org/10.1016/j.ejor.2004.09.018
    22 https://doi.org/10.1016/j.ejor.2008.05.007
    23 https://doi.org/10.1016/j.ejor.2009.06.011
    24 https://doi.org/10.1016/j.ejor.2011.12.045
    25 https://doi.org/10.1016/j.ejor.2014.07.012
    26 https://doi.org/10.1016/j.ifacol.2016.03.014
    27 https://doi.org/10.1016/j.ijpe.2007.01.017
    28 https://doi.org/10.1016/j.jmsy.2010.05.001
    29 https://doi.org/10.1016/j.omega.2006.04.014
    30 https://doi.org/10.1016/j.omega.2006.11.012
    31 https://doi.org/10.1016/j.omega.2010.07.002
    32 https://doi.org/10.1016/j.resconrec.2008.11.006
    33 https://doi.org/10.1016/j.resconrec.2009.06.004
    34 https://doi.org/10.1016/j.resconrec.2010.06.014
    35 https://doi.org/10.1016/j.resconrec.2015.05.014
    36 https://doi.org/10.1016/j.tre.2006.11.003
    37 https://doi.org/10.1016/j.tre.2007.04.002
    38 https://doi.org/10.1016/s0360-8352(02)00076-1
    39 https://doi.org/10.1016/s0360-8352(99)00168-0
    40 https://doi.org/10.1016/s0377-2217(02)00153-4
    41 https://doi.org/10.1016/s0377-2217(02)00497-6
    42 https://doi.org/10.1016/s0377-2217(99)00105-8
    43 https://doi.org/10.1080/00207540902906151
    44 https://doi.org/10.1080/07408170490458580
    45 https://doi.org/10.1108/09576059910284159
    46 https://doi.org/10.1109/4235.661548
    47 https://doi.org/10.1109/icec.1998.699754
    48 https://doi.org/10.1109/isee.1995.514981
    49 https://doi.org/10.1111/j.1937-5956.2001.tb00076.x
    50 https://doi.org/10.1287/ijoc.3.4.307
    51 https://doi.org/10.1287/inte.33.6.57.25183
    52 https://doi.org/10.1504/ijlsm.2007.012070
    53 https://doi.org/10.4114/ia.v7i19.721
    54 schema:datePublished 2016-12
    55 schema:datePublishedReg 2016-12-01
    56 schema:description Logistics network design is a major strategic issue in supply chain management of both forward and reverse flow, which industrial players are forced but not equipped to handle. To avoid sub-optimal solution derived by separated design, we consider an integrated forward reverse logistics network design, which is enriched by using a complete delivery graph. We formulate the cyclic seven-stage logistics network problem as a NP hard mixed integer linear programming model. To find the near optimal solution, we apply a memetic algorithm with a neighborhood search mechanism and a novel chromosome representation including two segments. The power of extended random path-based direct encoding method is shown by a comparison to commercial package in terms of both quality of solution and computational time. We show that the proposed algorithm is able to efficiently find a good solution for the flexible integrated logistics network.
    57 schema:genre research_article
    58 schema:inLanguage en
    59 schema:isAccessibleForFree true
    60 schema:isPartOf N41c416a5c7ad4e919e65221259272d3c
    61 N6e856d69d325425b89aac876e64195e2
    62 sg:journal.1136819
    63 schema:name A memetic algorithm with extended random path encoding for a closed-loop supply chain model with flexible delivery
    64 schema:pagination 22
    65 schema:productId N251a89c8bba44f6b97a7dca8e67c88bb
    66 N828809133a32471385df3e5db9d214c2
    67 Nca227de963ad4b30bc2812f27837f411
    68 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026718191
    69 https://doi.org/10.1007/s12159-016-0150-y
    70 schema:sdDatePublished 2019-04-11T12:38
    71 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    72 schema:sdPublisher N89ba1eb3ac60490c83189f49c280eef8
    73 schema:url https://link.springer.com/10.1007%2Fs12159-016-0150-y
    74 sgo:license sg:explorer/license/
    75 sgo:sdDataset articles
    76 rdf:type schema:ScholarlyArticle
    77 N251a89c8bba44f6b97a7dca8e67c88bb schema:name dimensions_id
    78 schema:value pub.1026718191
    79 rdf:type schema:PropertyValue
    80 N41c416a5c7ad4e919e65221259272d3c schema:issueNumber 1
    81 rdf:type schema:PublicationIssue
    82 N6e856d69d325425b89aac876e64195e2 schema:volumeNumber 9
    83 rdf:type schema:PublicationVolume
    84 N8141ae8a38b14c5aa11826765319339d rdf:first sg:person.011636674044.68
    85 rdf:rest rdf:nil
    86 N828809133a32471385df3e5db9d214c2 schema:name readcube_id
    87 schema:value 7f486dfda5beae6943f07b761e6099203dd464817635d06ef6f660de2f99bbc4
    88 rdf:type schema:PropertyValue
    89 N89ba1eb3ac60490c83189f49c280eef8 schema:name Springer Nature - SN SciGraph project
    90 rdf:type schema:Organization
    91 Nca227de963ad4b30bc2812f27837f411 schema:name doi
    92 schema:value 10.1007/s12159-016-0150-y
    93 rdf:type schema:PropertyValue
    94 Ne52c77c3c6684cab88fa9267a18564a3 rdf:first sg:person.014372045716.26
    95 rdf:rest N8141ae8a38b14c5aa11826765319339d
    96 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    97 schema:name Mathematical Sciences
    98 rdf:type schema:DefinedTerm
    99 anzsrc-for:0102 schema:inDefinedTermSet anzsrc-for:
    100 schema:name Applied Mathematics
    101 rdf:type schema:DefinedTerm
    102 sg:journal.1136819 schema:issn 1865-035X
    103 1865-0368
    104 schema:name Logistics Research
    105 rdf:type schema:Periodical
    106 sg:person.011636674044.68 schema:affiliation https://www.grid.ac/institutes/grid.7704.4
    107 schema:familyName Pannek
    108 schema:givenName Jürgen
    109 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011636674044.68
    110 rdf:type schema:Person
    111 sg:person.014372045716.26 schema:affiliation https://www.grid.ac/institutes/grid.7704.4
    112 schema:familyName Behmanesh
    113 schema:givenName Elham
    114 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014372045716.26
    115 rdf:type schema:Person
    116 sg:pub.10.1007/bf01009452 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019054075
    117 https://doi.org/10.1007/bf01009452
    118 rdf:type schema:CreativeWork
    119 sg:pub.10.1007/s00170-003-2025-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1024705552
    120 https://doi.org/10.1007/s00170-003-2025-z
    121 rdf:type schema:CreativeWork
    122 sg:pub.10.1007/s00170-009-2194-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033612165
    123 https://doi.org/10.1007/s00170-009-2194-5
    124 rdf:type schema:CreativeWork
    125 sg:pub.10.1007/s00291-005-0029-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025906222
    126 https://doi.org/10.1007/s00291-005-0029-9
    127 rdf:type schema:CreativeWork
    128 sg:pub.10.1007/s002910050095 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053424667
    129 https://doi.org/10.1007/s002910050095
    130 rdf:type schema:CreativeWork
    131 sg:pub.10.1057/palgrave.jors.2601645 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012712984
    132 https://doi.org/10.1057/palgrave.jors.2601645
    133 rdf:type schema:CreativeWork
    134 https://doi.org/10.1002/nav.20262 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023298196
    135 rdf:type schema:CreativeWork
    136 https://doi.org/10.1016/j.advengsoft.2010.11.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017273231
    137 rdf:type schema:CreativeWork
    138 https://doi.org/10.1016/j.cie.2006.02.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051394213
    139 rdf:type schema:CreativeWork
    140 https://doi.org/10.1016/j.cie.2006.07.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020085781
    141 rdf:type schema:CreativeWork
    142 https://doi.org/10.1016/j.cie.2007.06.022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039448093
    143 rdf:type schema:CreativeWork
    144 https://doi.org/10.1016/j.cie.2008.09.037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041803909
    145 rdf:type schema:CreativeWork
    146 https://doi.org/10.1016/j.cor.2005.03.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003361800
    147 rdf:type schema:CreativeWork
    148 https://doi.org/10.1016/j.cor.2006.12.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021662914
    149 rdf:type schema:CreativeWork
    150 https://doi.org/10.1016/j.cor.2009.06.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026728575
    151 rdf:type schema:CreativeWork
    152 https://doi.org/10.1016/j.cor.2009.09.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049285439
    153 rdf:type schema:CreativeWork
    154 https://doi.org/10.1016/j.ejor.2001.12.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051088380
    155 rdf:type schema:CreativeWork
    156 https://doi.org/10.1016/j.ejor.2004.09.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027273938
    157 rdf:type schema:CreativeWork
    158 https://doi.org/10.1016/j.ejor.2008.05.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022529793
    159 rdf:type schema:CreativeWork
    160 https://doi.org/10.1016/j.ejor.2009.06.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018062843
    161 rdf:type schema:CreativeWork
    162 https://doi.org/10.1016/j.ejor.2011.12.045 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037691979
    163 rdf:type schema:CreativeWork
    164 https://doi.org/10.1016/j.ejor.2014.07.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043389822
    165 rdf:type schema:CreativeWork
    166 https://doi.org/10.1016/j.ifacol.2016.03.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050474540
    167 rdf:type schema:CreativeWork
    168 https://doi.org/10.1016/j.ijpe.2007.01.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024925032
    169 rdf:type schema:CreativeWork
    170 https://doi.org/10.1016/j.jmsy.2010.05.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040878766
    171 rdf:type schema:CreativeWork
    172 https://doi.org/10.1016/j.omega.2006.04.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028055980
    173 rdf:type schema:CreativeWork
    174 https://doi.org/10.1016/j.omega.2006.11.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031319525
    175 rdf:type schema:CreativeWork
    176 https://doi.org/10.1016/j.omega.2010.07.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022371470
    177 rdf:type schema:CreativeWork
    178 https://doi.org/10.1016/j.resconrec.2008.11.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004535861
    179 rdf:type schema:CreativeWork
    180 https://doi.org/10.1016/j.resconrec.2009.06.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040320650
    181 rdf:type schema:CreativeWork
    182 https://doi.org/10.1016/j.resconrec.2010.06.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039999443
    183 rdf:type schema:CreativeWork
    184 https://doi.org/10.1016/j.resconrec.2015.05.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020991762
    185 rdf:type schema:CreativeWork
    186 https://doi.org/10.1016/j.tre.2006.11.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042525676
    187 rdf:type schema:CreativeWork
    188 https://doi.org/10.1016/j.tre.2007.04.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043046857
    189 rdf:type schema:CreativeWork
    190 https://doi.org/10.1016/s0360-8352(02)00076-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047071293
    191 rdf:type schema:CreativeWork
    192 https://doi.org/10.1016/s0360-8352(99)00168-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028399737
    193 rdf:type schema:CreativeWork
    194 https://doi.org/10.1016/s0377-2217(02)00153-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025238018
    195 rdf:type schema:CreativeWork
    196 https://doi.org/10.1016/s0377-2217(02)00497-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029753191
    197 rdf:type schema:CreativeWork
    198 https://doi.org/10.1016/s0377-2217(99)00105-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023578396
    199 rdf:type schema:CreativeWork
    200 https://doi.org/10.1080/00207540902906151 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005314213
    201 rdf:type schema:CreativeWork
    202 https://doi.org/10.1080/07408170490458580 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043845666
    203 rdf:type schema:CreativeWork
    204 https://doi.org/10.1108/09576059910284159 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048748789
    205 rdf:type schema:CreativeWork
    206 https://doi.org/10.1109/4235.661548 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061171986
    207 rdf:type schema:CreativeWork
    208 https://doi.org/10.1109/icec.1998.699754 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095189656
    209 rdf:type schema:CreativeWork
    210 https://doi.org/10.1109/isee.1995.514981 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094572911
    211 rdf:type schema:CreativeWork
    212 https://doi.org/10.1111/j.1937-5956.2001.tb00076.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1014384497
    213 rdf:type schema:CreativeWork
    214 https://doi.org/10.1287/ijoc.3.4.307 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064707386
    215 rdf:type schema:CreativeWork
    216 https://doi.org/10.1287/inte.33.6.57.25183 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064710547
    217 rdf:type schema:CreativeWork
    218 https://doi.org/10.1504/ijlsm.2007.012070 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067469876
    219 rdf:type schema:CreativeWork
    220 https://doi.org/10.4114/ia.v7i19.721 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072250641
    221 rdf:type schema:CreativeWork
    222 https://www.grid.ac/institutes/grid.7704.4 schema:alternateName University of Bremen
    223 schema:name BIBA Bremer Institut für Produktion und Logistik GmbH, Bremen, Germany
    224 Faculty of Production Engineering, University of Bremen, Bremen, Germany
    225 International Graduate School for Dynamics in Logistics, University of Bremen, Bremen, Germany
    226 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...