Optimization of Dilute Acid Pretreatment and Enzymatic Hydrolysis of Phalaris aquatica L. Lignocellulosic Biomass in Batch and Fed-Batch Processes View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2016-10-01

AUTHORS

Anna Karapatsia, Ioannis Pappas, Giannis Penloglou, Olympia Kotrotsiou, Costas Kiparissides

ABSTRACT

Phalaris aquatica L., a rich in holocellulose (69.80 %) and deficient in lignin (6.70 %) herbaceous, perennial grass species, was utilized in a two-step (biomass pretreatment-enzymatic hydrolysis) saccharification process for sugars recovery. The Taguchi methodology was employed to determine the dilute acid pretreatment and enzymatic hydrolysis conditions that optimized hemicellulose conversion (75.04 %), minimized the production of inhibitory compounds (1.41 g/L), and maximized the cellulose to glucose yield (69.69 %) of mixed particulate biomass (particles <1000 μm) under batch conditions. The effect of biomass particle size on saccharification process efficiency was also investigated. It was found that small-size biomass particles (53–106 μm) resulted in maximum hemicellulose conversion (81.12 %) and cellulose to glucose yield (93.24 %). The determined optimal conditions were then applied to a combined batch pretreatment process followed by a fed-batch enzymatic hydrolysis process that maximized glucose concentration (62.24 g/L) and yield (92.48 %). The overall efficiency of the saccharification process was 88.13 %. More... »

PAGES

225-236

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s12155-016-9793-4

DOI

http://dx.doi.org/10.1007/s12155-016-9793-4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1031312413


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/10", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Technology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1003", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Industrial Biotechnology", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Chemical Engineering, Aristotle University of Thessaloniki (AUTH), P.O. Box: 472, 54124, Thessaloniki, Greece", 
          "id": "http://www.grid.ac/institutes/grid.4793.9", 
          "name": [
            "Department of Chemical Engineering, Aristotle University of Thessaloniki (AUTH), P.O. Box: 472, 54124, Thessaloniki, Greece"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Karapatsia", 
        "givenName": "Anna", 
        "id": "sg:person.012104344673.68", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012104344673.68"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Chemical Process and Energy Resources Institute (CPERI), Centre for Research and Technology Hellas (CERTH), Thermi, P.O. Box: 60361, 57001, Thessaloniki, Greece", 
          "id": "http://www.grid.ac/institutes/grid.423747.1", 
          "name": [
            "Chemical Process and Energy Resources Institute (CPERI), Centre for Research and Technology Hellas (CERTH), Thermi, P.O. Box: 60361, 57001, Thessaloniki, Greece"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pappas", 
        "givenName": "Ioannis", 
        "id": "sg:person.01337641446.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01337641446.52"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Chemical Process and Energy Resources Institute (CPERI), Centre for Research and Technology Hellas (CERTH), Thermi, P.O. Box: 60361, 57001, Thessaloniki, Greece", 
          "id": "http://www.grid.ac/institutes/grid.423747.1", 
          "name": [
            "Chemical Process and Energy Resources Institute (CPERI), Centre for Research and Technology Hellas (CERTH), Thermi, P.O. Box: 60361, 57001, Thessaloniki, Greece"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Penloglou", 
        "givenName": "Giannis", 
        "id": "sg:person.01121443643.04", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01121443643.04"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Chemical Process and Energy Resources Institute (CPERI), Centre for Research and Technology Hellas (CERTH), Thermi, P.O. Box: 60361, 57001, Thessaloniki, Greece", 
          "id": "http://www.grid.ac/institutes/grid.423747.1", 
          "name": [
            "Chemical Process and Energy Resources Institute (CPERI), Centre for Research and Technology Hellas (CERTH), Thermi, P.O. Box: 60361, 57001, Thessaloniki, Greece"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kotrotsiou", 
        "givenName": "Olympia", 
        "id": "sg:person.015761302443.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015761302443.05"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Chemical Process and Energy Resources Institute (CPERI), Centre for Research and Technology Hellas (CERTH), Thermi, P.O. Box: 60361, 57001, Thessaloniki, Greece", 
          "id": "http://www.grid.ac/institutes/grid.423747.1", 
          "name": [
            "Department of Chemical Engineering, Aristotle University of Thessaloniki (AUTH), P.O. Box: 472, 54124, Thessaloniki, Greece", 
            "Chemical Process and Energy Resources Institute (CPERI), Centre for Research and Technology Hellas (CERTH), Thermi, P.O. Box: 60361, 57001, Thessaloniki, Greece"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kiparissides", 
        "givenName": "Costas", 
        "id": "sg:person.0626704270.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0626704270.49"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s12155-013-9376-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002552207", 
          "https://doi.org/10.1007/s12155-013-9376-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12155-016-9732-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009245416", 
          "https://doi.org/10.1007/s12155-016-9732-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12155-015-9695-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008336072", 
          "https://doi.org/10.1007/s12155-015-9695-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1754-6834-4-14", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036870419", 
          "https://doi.org/10.1186/1754-6834-4-14"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12155-011-9125-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003572319", 
          "https://doi.org/10.1007/s12155-011-9125-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12155-010-9107-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049497852", 
          "https://doi.org/10.1007/s12155-010-9107-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12010-010-9004-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051304148", 
          "https://doi.org/10.1007/s12010-010-9004-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12010-014-0964-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008669691", 
          "https://doi.org/10.1007/s12010-014-0964-5"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016-10-01", 
    "datePublishedReg": "2016-10-01", 
    "description": "Phalaris aquatica L., a rich in holocellulose (69.80\u00a0%) and deficient in lignin (6.70\u00a0%) herbaceous, perennial grass species, was utilized in a two-step (biomass pretreatment-enzymatic hydrolysis) saccharification process for sugars recovery. The Taguchi methodology was employed to determine the dilute acid pretreatment and enzymatic hydrolysis conditions that optimized hemicellulose conversion (75.04\u00a0%), minimized the production of inhibitory compounds (1.41\u00a0g/L), and maximized the cellulose to glucose yield (69.69\u00a0%) of mixed particulate biomass (particles <1000\u00a0\u03bcm) under batch conditions. The effect of biomass particle size on saccharification process efficiency was also investigated. It was found that small-size biomass particles (53\u2013106\u00a0\u03bcm) resulted in maximum hemicellulose conversion (81.12\u00a0%) and cellulose to glucose yield (93.24\u00a0%). The determined optimal conditions were then applied to a combined batch pretreatment process followed by a fed-batch enzymatic hydrolysis process that maximized glucose concentration (62.24\u00a0g/L) and yield (92.48\u00a0%). The overall efficiency of the saccharification process was 88.13\u00a0%.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s12155-016-9793-4", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1040876", 
        "issn": [
          "1939-1234", 
          "1939-1242"
        ], 
        "name": "BioEnergy Research", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "10"
      }
    ], 
    "keywords": [
      "biomass particle size", 
      "dilute acid pretreatment", 
      "hemicellulose conversion", 
      "biomass particles", 
      "Taguchi methodology", 
      "process efficiency", 
      "determined optimal conditions", 
      "enzymatic hydrolysis process", 
      "pretreatment process", 
      "acid pretreatment", 
      "overall efficiency", 
      "particle size", 
      "particulate biomass", 
      "enzymatic hydrolysis conditions", 
      "batch conditions", 
      "saccharification process", 
      "sugar recovery", 
      "hydrolysis process", 
      "lignocellulosic biomass", 
      "optimal conditions", 
      "hydrolysis conditions", 
      "efficiency", 
      "fed-batch process", 
      "process", 
      "conditions", 
      "enzymatic hydrolysis", 
      "particles", 
      "conversion", 
      "optimization", 
      "biomass", 
      "batch", 
      "cellulose", 
      "methodology", 
      "yield", 
      "size", 
      "lignin", 
      "inhibitory compounds", 
      "recovery", 
      "pretreatment", 
      "holocellulose", 
      "concentration", 
      "effect", 
      "production", 
      "hydrolysis", 
      "compounds", 
      "glucose concentration", 
      "species", 
      "L.", 
      "Phalaris aquatica L.", 
      "grass species", 
      "perennial grass species"
    ], 
    "name": "Optimization of Dilute Acid Pretreatment and Enzymatic Hydrolysis of Phalaris aquatica L. Lignocellulosic Biomass in Batch and Fed-Batch Processes", 
    "pagination": "225-236", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1031312413"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s12155-016-9793-4"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s12155-016-9793-4", 
      "https://app.dimensions.ai/details/publication/pub.1031312413"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-09-02T16:00", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_692.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s12155-016-9793-4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12155-016-9793-4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12155-016-9793-4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12155-016-9793-4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12155-016-9793-4'


 

This table displays all metadata directly associated to this object as RDF triples.

172 TRIPLES      21 PREDICATES      83 URIs      67 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s12155-016-9793-4 schema:about anzsrc-for:10
2 anzsrc-for:1003
3 schema:author N62c7ed7f8ef445598b468a0358a93968
4 schema:citation sg:pub.10.1007/s12010-010-9004-2
5 sg:pub.10.1007/s12010-014-0964-5
6 sg:pub.10.1007/s12155-010-9107-1
7 sg:pub.10.1007/s12155-011-9125-7
8 sg:pub.10.1007/s12155-013-9376-6
9 sg:pub.10.1007/s12155-015-9695-x
10 sg:pub.10.1007/s12155-016-9732-4
11 sg:pub.10.1186/1754-6834-4-14
12 schema:datePublished 2016-10-01
13 schema:datePublishedReg 2016-10-01
14 schema:description Phalaris aquatica L., a rich in holocellulose (69.80 %) and deficient in lignin (6.70 %) herbaceous, perennial grass species, was utilized in a two-step (biomass pretreatment-enzymatic hydrolysis) saccharification process for sugars recovery. The Taguchi methodology was employed to determine the dilute acid pretreatment and enzymatic hydrolysis conditions that optimized hemicellulose conversion (75.04 %), minimized the production of inhibitory compounds (1.41 g/L), and maximized the cellulose to glucose yield (69.69 %) of mixed particulate biomass (particles <1000 μm) under batch conditions. The effect of biomass particle size on saccharification process efficiency was also investigated. It was found that small-size biomass particles (53–106 μm) resulted in maximum hemicellulose conversion (81.12 %) and cellulose to glucose yield (93.24 %). The determined optimal conditions were then applied to a combined batch pretreatment process followed by a fed-batch enzymatic hydrolysis process that maximized glucose concentration (62.24 g/L) and yield (92.48 %). The overall efficiency of the saccharification process was 88.13 %.
15 schema:genre article
16 schema:isAccessibleForFree false
17 schema:isPartOf N5c011efcd6364326a17a12d94d4bdc4b
18 Naec37b0f76314ce78e1c2ab4959742da
19 sg:journal.1040876
20 schema:keywords L.
21 Phalaris aquatica L.
22 Taguchi methodology
23 acid pretreatment
24 batch
25 batch conditions
26 biomass
27 biomass particle size
28 biomass particles
29 cellulose
30 compounds
31 concentration
32 conditions
33 conversion
34 determined optimal conditions
35 dilute acid pretreatment
36 effect
37 efficiency
38 enzymatic hydrolysis
39 enzymatic hydrolysis conditions
40 enzymatic hydrolysis process
41 fed-batch process
42 glucose concentration
43 grass species
44 hemicellulose conversion
45 holocellulose
46 hydrolysis
47 hydrolysis conditions
48 hydrolysis process
49 inhibitory compounds
50 lignin
51 lignocellulosic biomass
52 methodology
53 optimal conditions
54 optimization
55 overall efficiency
56 particle size
57 particles
58 particulate biomass
59 perennial grass species
60 pretreatment
61 pretreatment process
62 process
63 process efficiency
64 production
65 recovery
66 saccharification process
67 size
68 species
69 sugar recovery
70 yield
71 schema:name Optimization of Dilute Acid Pretreatment and Enzymatic Hydrolysis of Phalaris aquatica L. Lignocellulosic Biomass in Batch and Fed-Batch Processes
72 schema:pagination 225-236
73 schema:productId Nb2ff47788173471e92181c8ad43c6943
74 Nbdc5266e1b9b4b3fbc524074a3ed8d97
75 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031312413
76 https://doi.org/10.1007/s12155-016-9793-4
77 schema:sdDatePublished 2022-09-02T16:00
78 schema:sdLicense https://scigraph.springernature.com/explorer/license/
79 schema:sdPublisher Need1989ab26a428d9e7a9afe8e3e1dda
80 schema:url https://doi.org/10.1007/s12155-016-9793-4
81 sgo:license sg:explorer/license/
82 sgo:sdDataset articles
83 rdf:type schema:ScholarlyArticle
84 N291cff17dbb443799ad666e21261a487 rdf:first sg:person.01337641446.52
85 rdf:rest N567f099b9f8f4ed597cbd7d03a3ca1ae
86 N567f099b9f8f4ed597cbd7d03a3ca1ae rdf:first sg:person.01121443643.04
87 rdf:rest N9eb46694d3e642cda5f620f135fda319
88 N5c011efcd6364326a17a12d94d4bdc4b schema:volumeNumber 10
89 rdf:type schema:PublicationVolume
90 N62c7ed7f8ef445598b468a0358a93968 rdf:first sg:person.012104344673.68
91 rdf:rest N291cff17dbb443799ad666e21261a487
92 N9eb46694d3e642cda5f620f135fda319 rdf:first sg:person.015761302443.05
93 rdf:rest Nd06e5f47493f409c9fd494c0fe984ebe
94 Naec37b0f76314ce78e1c2ab4959742da schema:issueNumber 1
95 rdf:type schema:PublicationIssue
96 Nb2ff47788173471e92181c8ad43c6943 schema:name doi
97 schema:value 10.1007/s12155-016-9793-4
98 rdf:type schema:PropertyValue
99 Nbdc5266e1b9b4b3fbc524074a3ed8d97 schema:name dimensions_id
100 schema:value pub.1031312413
101 rdf:type schema:PropertyValue
102 Nd06e5f47493f409c9fd494c0fe984ebe rdf:first sg:person.0626704270.49
103 rdf:rest rdf:nil
104 Need1989ab26a428d9e7a9afe8e3e1dda schema:name Springer Nature - SN SciGraph project
105 rdf:type schema:Organization
106 anzsrc-for:10 schema:inDefinedTermSet anzsrc-for:
107 schema:name Technology
108 rdf:type schema:DefinedTerm
109 anzsrc-for:1003 schema:inDefinedTermSet anzsrc-for:
110 schema:name Industrial Biotechnology
111 rdf:type schema:DefinedTerm
112 sg:journal.1040876 schema:issn 1939-1234
113 1939-1242
114 schema:name BioEnergy Research
115 schema:publisher Springer Nature
116 rdf:type schema:Periodical
117 sg:person.01121443643.04 schema:affiliation grid-institutes:grid.423747.1
118 schema:familyName Penloglou
119 schema:givenName Giannis
120 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01121443643.04
121 rdf:type schema:Person
122 sg:person.012104344673.68 schema:affiliation grid-institutes:grid.4793.9
123 schema:familyName Karapatsia
124 schema:givenName Anna
125 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012104344673.68
126 rdf:type schema:Person
127 sg:person.01337641446.52 schema:affiliation grid-institutes:grid.423747.1
128 schema:familyName Pappas
129 schema:givenName Ioannis
130 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01337641446.52
131 rdf:type schema:Person
132 sg:person.015761302443.05 schema:affiliation grid-institutes:grid.423747.1
133 schema:familyName Kotrotsiou
134 schema:givenName Olympia
135 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015761302443.05
136 rdf:type schema:Person
137 sg:person.0626704270.49 schema:affiliation grid-institutes:grid.423747.1
138 schema:familyName Kiparissides
139 schema:givenName Costas
140 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0626704270.49
141 rdf:type schema:Person
142 sg:pub.10.1007/s12010-010-9004-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051304148
143 https://doi.org/10.1007/s12010-010-9004-2
144 rdf:type schema:CreativeWork
145 sg:pub.10.1007/s12010-014-0964-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008669691
146 https://doi.org/10.1007/s12010-014-0964-5
147 rdf:type schema:CreativeWork
148 sg:pub.10.1007/s12155-010-9107-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049497852
149 https://doi.org/10.1007/s12155-010-9107-1
150 rdf:type schema:CreativeWork
151 sg:pub.10.1007/s12155-011-9125-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003572319
152 https://doi.org/10.1007/s12155-011-9125-7
153 rdf:type schema:CreativeWork
154 sg:pub.10.1007/s12155-013-9376-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002552207
155 https://doi.org/10.1007/s12155-013-9376-6
156 rdf:type schema:CreativeWork
157 sg:pub.10.1007/s12155-015-9695-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1008336072
158 https://doi.org/10.1007/s12155-015-9695-x
159 rdf:type schema:CreativeWork
160 sg:pub.10.1007/s12155-016-9732-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009245416
161 https://doi.org/10.1007/s12155-016-9732-4
162 rdf:type schema:CreativeWork
163 sg:pub.10.1186/1754-6834-4-14 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036870419
164 https://doi.org/10.1186/1754-6834-4-14
165 rdf:type schema:CreativeWork
166 grid-institutes:grid.423747.1 schema:alternateName Chemical Process and Energy Resources Institute (CPERI), Centre for Research and Technology Hellas (CERTH), Thermi, P.O. Box: 60361, 57001, Thessaloniki, Greece
167 schema:name Chemical Process and Energy Resources Institute (CPERI), Centre for Research and Technology Hellas (CERTH), Thermi, P.O. Box: 60361, 57001, Thessaloniki, Greece
168 Department of Chemical Engineering, Aristotle University of Thessaloniki (AUTH), P.O. Box: 472, 54124, Thessaloniki, Greece
169 rdf:type schema:Organization
170 grid-institutes:grid.4793.9 schema:alternateName Department of Chemical Engineering, Aristotle University of Thessaloniki (AUTH), P.O. Box: 472, 54124, Thessaloniki, Greece
171 schema:name Department of Chemical Engineering, Aristotle University of Thessaloniki (AUTH), P.O. Box: 472, 54124, Thessaloniki, Greece
172 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...