Super-early images of brain perfusion SPECT using 123I-IMP for the assessment of hyperperfusion in stroke patients View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-12

AUTHORS

Yusuke Inoue, Toshimasa Hara, Tomomi Ikari, Keita Takahashi, Hiroki Miyatake, Yutaka Abe

ABSTRACT

OBJECTIVE: With the advancement of reperfusion therapy in stroke patients, assessment of perfusion status after therapy is gaining importance. Hyperperfusion tends to be underestimated by the conventional early imaging of 123I-IMP brain perfusion SPECT. We evaluated the utility of super-early imaging as an adjunct to early imaging for the assessment of postischemic hyperperfusion in stroke patients. METHODS: Sixty-seven patients who underwent 123I-IMP brain perfusion SPECT within 14 days after the onset of cerebral infarction were retrospectively analyzed. Super-early (4-10 min) and early (15-45 min) images were acquired using a dual-headed gamma camera. Postischemic hyperperfusion was visually assessed using the early images alone and then using both the super-early and early images, and the frequency of postischemic hyperperfusion and the confidence level of the judgement were evaluated. For quantitative evaluation of image contrast, the contrast ratios (the count ratios of the hyperperfused to normal areas) were calculated. RESULTS: The frequency of postischemic hyperperfusion was significantly higher using both the super-early and early images (28/67 patients) than using the early images alone (17/67 patients, p < 0.001). In 56 patients in whom judgement regarding the presence or absence of postischemic hyperperfusion was unchanged, the confidence level was increased in 8 patients using both image sets. The addition of the super-early SPECT images was judged to be useful and marginally useful in 14 and 15 patients, respectively. The contrast ratio was significantly higher on the super-early images (1.48 ± 0.25) than on the early images (1.26 ± 0.18, p < 0.001). CONCLUSIONS: The addition of super-early imaging to the conventional early imaging aids assessment of postischemic hyperperfusion by 123I-IMP brain perfusion SPECT and may contribute to management of stroke patients in the era of reperfusion therapy. More... »

PAGES

695-701

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s12149-018-1293-5

DOI

http://dx.doi.org/10.1007/s12149-018-1293-5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1106489829

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30173368


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1109", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Neurosciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Brain", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cerebrovascular Circulation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Iofetamine", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Retrospective Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Stroke", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Time Factors", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Tomography, Emission-Computed, Single-Photon", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Kitasato University", 
          "id": "https://www.grid.ac/institutes/grid.410786.c", 
          "name": [
            "Department of Diagnostic Radiology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, 252-0374, Sagamihara, Kanagawa, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Inoue", 
        "givenName": "Yusuke", 
        "id": "sg:person.010476276272.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010476276272.43"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Kitasato University", 
          "id": "https://www.grid.ac/institutes/grid.410786.c", 
          "name": [
            "Department of Diagnostic Radiology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, 252-0374, Sagamihara, Kanagawa, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hara", 
        "givenName": "Toshimasa", 
        "id": "sg:person.0733011435.36", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0733011435.36"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Kitasato University", 
          "id": "https://www.grid.ac/institutes/grid.410786.c", 
          "name": [
            "Department of Diagnostic Radiology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, 252-0374, Sagamihara, Kanagawa, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ikari", 
        "givenName": "Tomomi", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Kitasato Institute Hospital", 
          "id": "https://www.grid.ac/institutes/grid.415395.f", 
          "name": [
            "Department of Radiology, Kitasato University Hospital, Sagamihara, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Takahashi", 
        "givenName": "Keita", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Kitasato Institute Hospital", 
          "id": "https://www.grid.ac/institutes/grid.415395.f", 
          "name": [
            "Department of Radiology, Kitasato University Hospital, Sagamihara, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Miyatake", 
        "givenName": "Hiroki", 
        "id": "sg:person.014702247075.88", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014702247075.88"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Kitasato Institute Hospital", 
          "id": "https://www.grid.ac/institutes/grid.415395.f", 
          "name": [
            "Department of Radiology, Kitasato University Hospital, Sagamihara, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Abe", 
        "givenName": "Yutaka", 
        "id": "sg:person.01367534146.76", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01367534146.76"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf03165072", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006726710", 
          "https://doi.org/10.1007/bf03165072"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf03165072", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006726710", 
          "https://doi.org/10.1007/bf03165072"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1748-1716.1963.tb02652.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017194506"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1038/jcbfm.2014.238", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021671425"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1038/jcbfm.2014.238", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021671425"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/strokeaha.108.543595", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024545174"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/strokeaha.108.543595", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024545174"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00003072-199309000-00005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024989895"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00003072-199309000-00005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024989895"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jstrokecerebrovasdis.2013.07.028", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030362800"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00003072-200203000-00009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031005143"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00003072-200203000-00009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031005143"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/01.str.24.2.193", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033636890"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/strokeaha.108.526814", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036702836"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/strokeaha.108.526814", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036702836"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.braindev.2010.06.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045114013"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01566007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049567551", 
          "https://doi.org/10.1007/bf01566007"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1212/wnl.48.5.1347", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064374943"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3171/jns-07/12/1130", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071083427"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3171/jns-07/12/1130", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071083427"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3171/jns-07/12/1130", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071083427"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3171/jns-07/12/1130", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071083427"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3171/jns-07/12/1130", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071083427"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3171/jns-07/12/1130", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071083427"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1077466846", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1079068281", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1079357542", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1081851801", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1082723691", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1082727894", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1082731834", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1082823964", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1083216218", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/0271678x17718099", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090391809"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/0271678x17718099", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090391809"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/str.0000000000000158", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100621040"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/str.0000000000000158", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100621040"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/str.0000000000000158", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100621040"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-12", 
    "datePublishedReg": "2018-12-01", 
    "description": "OBJECTIVE: With the advancement of reperfusion therapy in stroke patients, assessment of perfusion status after therapy is gaining importance. Hyperperfusion tends to be underestimated by the conventional early imaging of 123I-IMP brain perfusion SPECT. We evaluated the utility of super-early imaging as an adjunct to early imaging for the assessment of postischemic hyperperfusion in stroke patients.\nMETHODS: Sixty-seven patients who underwent 123I-IMP brain perfusion SPECT within 14 days after the onset of cerebral infarction were retrospectively analyzed. Super-early (4-10\u00a0min) and early (15-45\u00a0min) images were acquired using a dual-headed gamma camera. Postischemic hyperperfusion was visually assessed using the early images alone and then using both the super-early and early images, and the frequency of postischemic hyperperfusion and the confidence level of the judgement were evaluated. For quantitative evaluation of image contrast, the contrast ratios (the count ratios of the hyperperfused to normal areas) were calculated.\nRESULTS: The frequency of postischemic hyperperfusion was significantly higher using both the super-early and early images (28/67 patients) than using the early images alone (17/67 patients, p\u2009<\u20090.001). In 56 patients in whom judgement regarding the presence or absence of postischemic hyperperfusion was unchanged, the confidence level was increased in 8 patients using both image sets. The addition of the super-early SPECT images was judged to be useful and marginally useful in 14 and 15 patients, respectively. The contrast ratio was significantly higher on the super-early images (1.48\u2009\u00b1\u20090.25) than on the early images (1.26\u2009\u00b1\u20090.18, p\u2009<\u20090.001).\nCONCLUSIONS: The addition of super-early imaging to the conventional early imaging aids assessment of postischemic hyperperfusion by 123I-IMP brain perfusion SPECT and may contribute to management of stroke patients in the era of reperfusion therapy.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s12149-018-1293-5", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1099601", 
        "issn": [
          "0914-7187", 
          "1864-6433"
        ], 
        "name": "Annals of Nuclear Medicine", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "10", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "32"
      }
    ], 
    "name": "Super-early images of brain perfusion SPECT using 123I-IMP for the assessment of hyperperfusion in stroke patients", 
    "pagination": "695-701", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "c81933109cffca0fd3a09fa611e7f5347d5d9b2b4050921eb8df03625b5ac1ca"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30173368"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "8913398"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s12149-018-1293-5"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1106489829"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s12149-018-1293-5", 
      "https://app.dimensions.ai/details/publication/pub.1106489829"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:36", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000363_0000000363/records_70031_00000003.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs12149-018-1293-5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12149-018-1293-5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12149-018-1293-5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12149-018-1293-5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12149-018-1293-5'


 

This table displays all metadata directly associated to this object as RDF triples.

214 TRIPLES      21 PREDICATES      64 URIs      32 LITERALS      20 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s12149-018-1293-5 schema:about N07700006ef4f48b19cdf39a368cb3d1d
2 N0f1147b59d944d8a876f7b6cdc5944d1
3 N125fc3fc50d246dfa2cec9213e680632
4 N1d146e8fa20e49ecb74f71d3611a233f
5 N1ffb4015bdb4420cadce35941d036e7d
6 N329ca6ca2ea744edac22003b53f4b959
7 N5b79b0a7242b41cbb6cfd32d5d1f8a54
8 N7671acd12fd7482cb3f3d12fda83ae09
9 N799246d593704b72acc7757ff7ec5fcc
10 Nd3594c3973ce4408bf99f648d74c9825
11 Ne6af36ec2b1d4a41974aa911dc0a3991
12 anzsrc-for:11
13 anzsrc-for:1109
14 schema:author N128dca12e3414962924a7b34b30ae5a0
15 schema:citation sg:pub.10.1007/bf01566007
16 sg:pub.10.1007/bf03165072
17 https://app.dimensions.ai/details/publication/pub.1077466846
18 https://app.dimensions.ai/details/publication/pub.1079068281
19 https://app.dimensions.ai/details/publication/pub.1079357542
20 https://app.dimensions.ai/details/publication/pub.1081851801
21 https://app.dimensions.ai/details/publication/pub.1082723691
22 https://app.dimensions.ai/details/publication/pub.1082727894
23 https://app.dimensions.ai/details/publication/pub.1082731834
24 https://app.dimensions.ai/details/publication/pub.1082823964
25 https://app.dimensions.ai/details/publication/pub.1083216218
26 https://doi.org/10.1016/j.braindev.2010.06.010
27 https://doi.org/10.1016/j.jstrokecerebrovasdis.2013.07.028
28 https://doi.org/10.1038/jcbfm.2014.238
29 https://doi.org/10.1097/00003072-199309000-00005
30 https://doi.org/10.1097/00003072-200203000-00009
31 https://doi.org/10.1111/j.1748-1716.1963.tb02652.x
32 https://doi.org/10.1161/01.str.24.2.193
33 https://doi.org/10.1161/str.0000000000000158
34 https://doi.org/10.1161/strokeaha.108.526814
35 https://doi.org/10.1161/strokeaha.108.543595
36 https://doi.org/10.1177/0271678x17718099
37 https://doi.org/10.1212/wnl.48.5.1347
38 https://doi.org/10.3171/jns-07/12/1130
39 schema:datePublished 2018-12
40 schema:datePublishedReg 2018-12-01
41 schema:description OBJECTIVE: With the advancement of reperfusion therapy in stroke patients, assessment of perfusion status after therapy is gaining importance. Hyperperfusion tends to be underestimated by the conventional early imaging of 123I-IMP brain perfusion SPECT. We evaluated the utility of super-early imaging as an adjunct to early imaging for the assessment of postischemic hyperperfusion in stroke patients. METHODS: Sixty-seven patients who underwent 123I-IMP brain perfusion SPECT within 14 days after the onset of cerebral infarction were retrospectively analyzed. Super-early (4-10 min) and early (15-45 min) images were acquired using a dual-headed gamma camera. Postischemic hyperperfusion was visually assessed using the early images alone and then using both the super-early and early images, and the frequency of postischemic hyperperfusion and the confidence level of the judgement were evaluated. For quantitative evaluation of image contrast, the contrast ratios (the count ratios of the hyperperfused to normal areas) were calculated. RESULTS: The frequency of postischemic hyperperfusion was significantly higher using both the super-early and early images (28/67 patients) than using the early images alone (17/67 patients, p < 0.001). In 56 patients in whom judgement regarding the presence or absence of postischemic hyperperfusion was unchanged, the confidence level was increased in 8 patients using both image sets. The addition of the super-early SPECT images was judged to be useful and marginally useful in 14 and 15 patients, respectively. The contrast ratio was significantly higher on the super-early images (1.48 ± 0.25) than on the early images (1.26 ± 0.18, p < 0.001). CONCLUSIONS: The addition of super-early imaging to the conventional early imaging aids assessment of postischemic hyperperfusion by 123I-IMP brain perfusion SPECT and may contribute to management of stroke patients in the era of reperfusion therapy.
42 schema:genre research_article
43 schema:inLanguage en
44 schema:isAccessibleForFree false
45 schema:isPartOf N41753cc321c74cd6a5c243abf6041785
46 Nc1a67099ce2d43e59b14e0111572a54d
47 sg:journal.1099601
48 schema:name Super-early images of brain perfusion SPECT using 123I-IMP for the assessment of hyperperfusion in stroke patients
49 schema:pagination 695-701
50 schema:productId N01b3ae6ce622474cbf9df1f35cdced12
51 N45e023e61581413aa312a4e94ea424c1
52 N6e080f0a446f4322a5df097c33ceb13f
53 Nc665b8a1a8f642ff8a5452ad14de4c23
54 Ne688aced81cb4081b335d517ec0bad0f
55 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106489829
56 https://doi.org/10.1007/s12149-018-1293-5
57 schema:sdDatePublished 2019-04-11T12:36
58 schema:sdLicense https://scigraph.springernature.com/explorer/license/
59 schema:sdPublisher N6540a462f83d4a66a67d731c164f9449
60 schema:url https://link.springer.com/10.1007%2Fs12149-018-1293-5
61 sgo:license sg:explorer/license/
62 sgo:sdDataset articles
63 rdf:type schema:ScholarlyArticle
64 N01b3ae6ce622474cbf9df1f35cdced12 schema:name pubmed_id
65 schema:value 30173368
66 rdf:type schema:PropertyValue
67 N07700006ef4f48b19cdf39a368cb3d1d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
68 schema:name Humans
69 rdf:type schema:DefinedTerm
70 N0f1147b59d944d8a876f7b6cdc5944d1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
71 schema:name Iofetamine
72 rdf:type schema:DefinedTerm
73 N125fc3fc50d246dfa2cec9213e680632 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
74 schema:name Brain
75 rdf:type schema:DefinedTerm
76 N128dca12e3414962924a7b34b30ae5a0 rdf:first sg:person.010476276272.43
77 rdf:rest Nbc7cffb31e144c4f9dfcfbc79e21f0f0
78 N1abc0bd2f5314bdd93eb53b74a3ddb39 rdf:first sg:person.014702247075.88
79 rdf:rest Ndc1f30c309d44a9fa2bcb7e441da3fd1
80 N1d146e8fa20e49ecb74f71d3611a233f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
81 schema:name Aged
82 rdf:type schema:DefinedTerm
83 N1ffb4015bdb4420cadce35941d036e7d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
84 schema:name Tomography, Emission-Computed, Single-Photon
85 rdf:type schema:DefinedTerm
86 N272798a24e244d54b954da85170f2766 schema:affiliation https://www.grid.ac/institutes/grid.410786.c
87 schema:familyName Ikari
88 schema:givenName Tomomi
89 rdf:type schema:Person
90 N329ca6ca2ea744edac22003b53f4b959 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
91 schema:name Cerebrovascular Circulation
92 rdf:type schema:DefinedTerm
93 N41753cc321c74cd6a5c243abf6041785 schema:volumeNumber 32
94 rdf:type schema:PublicationVolume
95 N45e023e61581413aa312a4e94ea424c1 schema:name nlm_unique_id
96 schema:value 8913398
97 rdf:type schema:PropertyValue
98 N5b79b0a7242b41cbb6cfd32d5d1f8a54 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
99 schema:name Time Factors
100 rdf:type schema:DefinedTerm
101 N6540a462f83d4a66a67d731c164f9449 schema:name Springer Nature - SN SciGraph project
102 rdf:type schema:Organization
103 N6e080f0a446f4322a5df097c33ceb13f schema:name readcube_id
104 schema:value c81933109cffca0fd3a09fa611e7f5347d5d9b2b4050921eb8df03625b5ac1ca
105 rdf:type schema:PropertyValue
106 N7671acd12fd7482cb3f3d12fda83ae09 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
107 schema:name Retrospective Studies
108 rdf:type schema:DefinedTerm
109 N799246d593704b72acc7757ff7ec5fcc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
110 schema:name Male
111 rdf:type schema:DefinedTerm
112 N99320ed4f2404bf58fbf6718b8baa63c rdf:first Nf56540aca6cf4a8a936545cf4360159f
113 rdf:rest N1abc0bd2f5314bdd93eb53b74a3ddb39
114 Na555705fb0e24fa88ec9d97c7d3bddd6 rdf:first N272798a24e244d54b954da85170f2766
115 rdf:rest N99320ed4f2404bf58fbf6718b8baa63c
116 Nbc7cffb31e144c4f9dfcfbc79e21f0f0 rdf:first sg:person.0733011435.36
117 rdf:rest Na555705fb0e24fa88ec9d97c7d3bddd6
118 Nc1a67099ce2d43e59b14e0111572a54d schema:issueNumber 10
119 rdf:type schema:PublicationIssue
120 Nc665b8a1a8f642ff8a5452ad14de4c23 schema:name dimensions_id
121 schema:value pub.1106489829
122 rdf:type schema:PropertyValue
123 Nd3594c3973ce4408bf99f648d74c9825 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
124 schema:name Female
125 rdf:type schema:DefinedTerm
126 Ndc1f30c309d44a9fa2bcb7e441da3fd1 rdf:first sg:person.01367534146.76
127 rdf:rest rdf:nil
128 Ne688aced81cb4081b335d517ec0bad0f schema:name doi
129 schema:value 10.1007/s12149-018-1293-5
130 rdf:type schema:PropertyValue
131 Ne6af36ec2b1d4a41974aa911dc0a3991 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
132 schema:name Stroke
133 rdf:type schema:DefinedTerm
134 Nf56540aca6cf4a8a936545cf4360159f schema:affiliation https://www.grid.ac/institutes/grid.415395.f
135 schema:familyName Takahashi
136 schema:givenName Keita
137 rdf:type schema:Person
138 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
139 schema:name Medical and Health Sciences
140 rdf:type schema:DefinedTerm
141 anzsrc-for:1109 schema:inDefinedTermSet anzsrc-for:
142 schema:name Neurosciences
143 rdf:type schema:DefinedTerm
144 sg:journal.1099601 schema:issn 0914-7187
145 1864-6433
146 schema:name Annals of Nuclear Medicine
147 rdf:type schema:Periodical
148 sg:person.010476276272.43 schema:affiliation https://www.grid.ac/institutes/grid.410786.c
149 schema:familyName Inoue
150 schema:givenName Yusuke
151 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010476276272.43
152 rdf:type schema:Person
153 sg:person.01367534146.76 schema:affiliation https://www.grid.ac/institutes/grid.415395.f
154 schema:familyName Abe
155 schema:givenName Yutaka
156 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01367534146.76
157 rdf:type schema:Person
158 sg:person.014702247075.88 schema:affiliation https://www.grid.ac/institutes/grid.415395.f
159 schema:familyName Miyatake
160 schema:givenName Hiroki
161 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014702247075.88
162 rdf:type schema:Person
163 sg:person.0733011435.36 schema:affiliation https://www.grid.ac/institutes/grid.410786.c
164 schema:familyName Hara
165 schema:givenName Toshimasa
166 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0733011435.36
167 rdf:type schema:Person
168 sg:pub.10.1007/bf01566007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049567551
169 https://doi.org/10.1007/bf01566007
170 rdf:type schema:CreativeWork
171 sg:pub.10.1007/bf03165072 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006726710
172 https://doi.org/10.1007/bf03165072
173 rdf:type schema:CreativeWork
174 https://app.dimensions.ai/details/publication/pub.1077466846 schema:CreativeWork
175 https://app.dimensions.ai/details/publication/pub.1079068281 schema:CreativeWork
176 https://app.dimensions.ai/details/publication/pub.1079357542 schema:CreativeWork
177 https://app.dimensions.ai/details/publication/pub.1081851801 schema:CreativeWork
178 https://app.dimensions.ai/details/publication/pub.1082723691 schema:CreativeWork
179 https://app.dimensions.ai/details/publication/pub.1082727894 schema:CreativeWork
180 https://app.dimensions.ai/details/publication/pub.1082731834 schema:CreativeWork
181 https://app.dimensions.ai/details/publication/pub.1082823964 schema:CreativeWork
182 https://app.dimensions.ai/details/publication/pub.1083216218 schema:CreativeWork
183 https://doi.org/10.1016/j.braindev.2010.06.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045114013
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1016/j.jstrokecerebrovasdis.2013.07.028 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030362800
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1038/jcbfm.2014.238 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021671425
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1097/00003072-199309000-00005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024989895
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1097/00003072-200203000-00009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031005143
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1111/j.1748-1716.1963.tb02652.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1017194506
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1161/01.str.24.2.193 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033636890
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1161/str.0000000000000158 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100621040
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1161/strokeaha.108.526814 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036702836
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1161/strokeaha.108.543595 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024545174
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1177/0271678x17718099 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090391809
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1212/wnl.48.5.1347 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064374943
206 rdf:type schema:CreativeWork
207 https://doi.org/10.3171/jns-07/12/1130 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071083427
208 rdf:type schema:CreativeWork
209 https://www.grid.ac/institutes/grid.410786.c schema:alternateName Kitasato University
210 schema:name Department of Diagnostic Radiology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, 252-0374, Sagamihara, Kanagawa, Japan
211 rdf:type schema:Organization
212 https://www.grid.ac/institutes/grid.415395.f schema:alternateName Kitasato Institute Hospital
213 schema:name Department of Radiology, Kitasato University Hospital, Sagamihara, Japan
214 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...