Prognostic value of volume-based metabolic parameters of 18F-FDG PET/CT in ovarian cancer: a systematic review and meta-analysis View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-12

AUTHORS

Sangwon Han, Hyesung Kim, Yeon Joo Kim, Chong Hyun Suh, Sungmin Woo

ABSTRACT

OBJECTIVE: To perform a systematic review and meta-analysis on the prognostic value of 18F-FDG PET-derived volume-based parameters regarding metabolic tumor volume (MTV) and total lesion glycolysis (TLG) in patients with ovarian cancer. METHODS: Pubmed and EMBASE databases were searched up to February 12, 2018 for studies which evaluated MTV or TLG as a prognostic factor in ovarian cancer with progression-free (PFS) and overall survival (OS) as the endpoints. Hazard ratios (HRs) were meta-analytically pooled using the random-effects model. Multiple subgroup analyses based on clinicopathological and PET variables were performed. RESULTS: Eight studies with 473 patients were included. The pooled HRs of MTV and TLG for PFS were 2.50 (95% CI 1.79-3.48; p < 0.00001) and 2.42 (95% CI 1.61-3.65; p < 0.0001), respectively. Regarding OS, the pooled HRs of MTV and TLG were 8.06 (95% CI 4.32-15.05; p < 0.00001) and 7.23 (95% CI 3.38-15.50; p < 0.00001), respectively. Multiple subgroup analyses consistently showed that MTV and TLG were significant prognostic factors for PFS with pooled HRs ranging from 2.35 to 2.58 and from 1.73 to 3.35, respectively. CONCLUSIONS: MTV and TLG from 18F-FDG PET were significant prognostic factors in patients with ovarian cancer. Despite the clinical heterogeneity and difference in methodology between the studies, patients with a high MTV or TLG have a higher risk of disease progression or death. More... »

PAGES

669-677

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s12149-018-1289-1

DOI

http://dx.doi.org/10.1007/s12149-018-1289-1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1106124539

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30101392


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1112", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Oncology and Carcinogenesis", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Disease-Free Survival", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Fluorodeoxyglucose F18", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Ovarian Neoplasms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Positron Emission Tomography Computed Tomography", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Asan Medical Center", 
          "id": "https://www.grid.ac/institutes/grid.413967.e", 
          "name": [
            "Meta-analysis for Imaging studies on Diagnostic test Accuracy and prognosiS (MIDAS) group, Seoul, Republic of Korea", 
            "Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Han", 
        "givenName": "Sangwon", 
        "id": "sg:person.016402717001.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016402717001.03"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Seoul National University", 
          "id": "https://www.grid.ac/institutes/grid.31501.36", 
          "name": [
            "Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kim", 
        "givenName": "Hyesung", 
        "id": "sg:person.011170071570.09", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011170071570.09"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Kangwon National University Hospital", 
          "id": "https://www.grid.ac/institutes/grid.412011.7", 
          "name": [
            "Department of Radiation Oncology, Kangwon National University Hospital, Chuncheon, South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kim", 
        "givenName": "Yeon Joo", 
        "id": "sg:person.011765452170.65", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011765452170.65"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Asan Medical Center", 
          "id": "https://www.grid.ac/institutes/grid.413967.e", 
          "name": [
            "Meta-analysis for Imaging studies on Diagnostic test Accuracy and prognosiS (MIDAS) group, Seoul, Republic of Korea", 
            "Department of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Suh", 
        "givenName": "Chong Hyun", 
        "id": "sg:person.01146627117.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01146627117.01"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Seoul National University", 
          "id": "https://www.grid.ac/institutes/grid.31501.36", 
          "name": [
            "Meta-analysis for Imaging studies on Diagnostic test Accuracy and prognosiS (MIDAS) group, Seoul, Republic of Korea", 
            "Department of Radiology, Seoul National University College of Medicine, Seoul, Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Woo", 
        "givenName": "Sungmin", 
        "id": "sg:person.01020616334.36", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01020616334.36"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1136/bmj.327.7414.557", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005003882"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00259-014-2903-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007455399", 
          "https://doi.org/10.1007/s00259-014-2903-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3322/caac.21387", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014894112"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cncr.24149", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015684380"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ygyno.2014.12.032", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019112970"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ygyno.2014.12.032", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019112970"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-015-3729-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020750610", 
          "https://doi.org/10.1007/s00330-015-3729-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-015-3729-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020750610", 
          "https://doi.org/10.1007/s00330-015-3729-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jclinepi.2009.06.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022806278"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/(sici)1097-0258(19981230)17:24<2815::aid-sim110>3.0.co;2-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023335611"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1245/s10434-011-2153-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024196126", 
          "https://doi.org/10.1245/s10434-011-2153-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s13139-014-0303-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025969280", 
          "https://doi.org/10.1007/s13139-014-0303-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-016-4368-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026409100", 
          "https://doi.org/10.1007/s00330-016-4368-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-016-4368-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026409100", 
          "https://doi.org/10.1007/s00330-016-4368-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3348/kjr.2013.14.1.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028073576"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ygyno.2004.07.045", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030412789"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00259-014-2803-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031024771", 
          "https://doi.org/10.1007/s00259-014-2803-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/rlu.0b013e31829f57fa", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032995158"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/rlu.0b013e31829f57fa", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032995158"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/rlu.0b013e31829f57fa", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032995158"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.remnie.2016.01.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036256478"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/cas.12890", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036872322"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2967/jnumed.113.133801", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038279828"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cncr.22974", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039669595"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ygyno.2014.02.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045923195"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1745-6215-8-16", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052599734", 
          "https://doi.org/10.1186/1745-6215-8-16"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1023/a:1008240421028", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056302711"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1136/bmj.315.7109.629", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062780726"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1136/bmj.315.7109.629", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062780726"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00259-017-3638-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083736016", 
          "https://doi.org/10.1007/s00259-017-3638-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00259-017-3638-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083736016", 
          "https://doi.org/10.1007/s00259-017-3638-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1200/jco.2002.20.5.1248", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083941976"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ejrad.2017.05.036", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085709866"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ejrad.2017.05.036", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085709866"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/mnm.0000000000000712", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090564230"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/mnm.0000000000000712", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090564230"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00259-018-3961-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101199064", 
          "https://doi.org/10.1007/s00259-018-3961-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00259-018-3961-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101199064", 
          "https://doi.org/10.1007/s00259-018-3961-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00259-018-3961-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101199064", 
          "https://doi.org/10.1007/s00259-018-3961-z"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-12", 
    "datePublishedReg": "2018-12-01", 
    "description": "OBJECTIVE: To perform a systematic review and meta-analysis on the prognostic value of 18F-FDG PET-derived volume-based parameters regarding metabolic tumor volume (MTV) and total lesion glycolysis (TLG) in patients with ovarian cancer.\nMETHODS: Pubmed and EMBASE databases were searched up to February 12, 2018 for studies which evaluated MTV or TLG as a prognostic factor in ovarian cancer with progression-free (PFS) and overall survival (OS) as the endpoints. Hazard ratios (HRs) were meta-analytically pooled using the random-effects model. Multiple subgroup analyses based on clinicopathological and PET variables were performed.\nRESULTS: Eight studies with 473 patients were included. The pooled HRs of MTV and TLG for PFS were 2.50 (95% CI 1.79-3.48; p\u2009<\u20090.00001) and 2.42 (95% CI 1.61-3.65; p\u2009<\u20090.0001), respectively. Regarding OS, the pooled HRs of MTV and TLG were 8.06 (95% CI 4.32-15.05; p\u2009<\u20090.00001) and 7.23 (95% CI 3.38-15.50; p\u2009<\u20090.00001), respectively. Multiple subgroup analyses consistently showed that MTV and TLG were significant prognostic factors for PFS with pooled HRs ranging from 2.35 to 2.58 and from 1.73 to 3.35, respectively.\nCONCLUSIONS: MTV and TLG from 18F-FDG PET were significant prognostic factors in patients with ovarian cancer. Despite the clinical heterogeneity and difference in methodology between the studies, patients with a high MTV or TLG have a higher risk of disease progression or death.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s12149-018-1289-1", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1099601", 
        "issn": [
          "0914-7187", 
          "1864-6433"
        ], 
        "name": "Annals of Nuclear Medicine", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "10", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "32"
      }
    ], 
    "name": "Prognostic value of volume-based metabolic parameters of 18F-FDG PET/CT in ovarian cancer: a systematic review and meta-analysis", 
    "pagination": "669-677", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "60844c297c2f9c939d3301c9293449b68d76d47e5d474b0399775834aed52d93"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30101392"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "8913398"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s12149-018-1289-1"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1106124539"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s12149-018-1289-1", 
      "https://app.dimensions.ai/details/publication/pub.1106124539"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:39", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000363_0000000363/records_70046_00000002.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs12149-018-1289-1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12149-018-1289-1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12149-018-1289-1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12149-018-1289-1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12149-018-1289-1'


 

This table displays all metadata directly associated to this object as RDF triples.

224 TRIPLES      21 PREDICATES      63 URIs      27 LITERALS      15 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s12149-018-1289-1 schema:about Na8c66874dfac486d8bb94dd54967877a
2 Naeec3f55d5dd4981803301ebb17e8423
3 Nafb5f282b43e4bd29d576868ec433406
4 Nd2733caaf51a43959002548801a9ca75
5 Nd5eeb11a60b64fbcbd7551350b704ccb
6 Ne65de219d7e44dfaac70d46a7539432d
7 anzsrc-for:11
8 anzsrc-for:1112
9 schema:author Nfb330569f8724d16a9592a1fb4d09186
10 schema:citation sg:pub.10.1007/s00259-014-2803-x
11 sg:pub.10.1007/s00259-014-2903-7
12 sg:pub.10.1007/s00259-017-3638-z
13 sg:pub.10.1007/s00259-018-3961-z
14 sg:pub.10.1007/s00330-015-3729-9
15 sg:pub.10.1007/s00330-016-4368-5
16 sg:pub.10.1007/s13139-014-0303-3
17 sg:pub.10.1186/1745-6215-8-16
18 sg:pub.10.1245/s10434-011-2153-x
19 https://doi.org/10.1002/(sici)1097-0258(19981230)17:24<2815::aid-sim110>3.0.co;2-8
20 https://doi.org/10.1002/cncr.22974
21 https://doi.org/10.1002/cncr.24149
22 https://doi.org/10.1016/j.ejrad.2017.05.036
23 https://doi.org/10.1016/j.jclinepi.2009.06.006
24 https://doi.org/10.1016/j.remnie.2016.01.009
25 https://doi.org/10.1016/j.ygyno.2004.07.045
26 https://doi.org/10.1016/j.ygyno.2014.02.008
27 https://doi.org/10.1016/j.ygyno.2014.12.032
28 https://doi.org/10.1023/a:1008240421028
29 https://doi.org/10.1097/mnm.0000000000000712
30 https://doi.org/10.1097/rlu.0b013e31829f57fa
31 https://doi.org/10.1111/cas.12890
32 https://doi.org/10.1136/bmj.315.7109.629
33 https://doi.org/10.1136/bmj.327.7414.557
34 https://doi.org/10.1200/jco.2002.20.5.1248
35 https://doi.org/10.2967/jnumed.113.133801
36 https://doi.org/10.3322/caac.21387
37 https://doi.org/10.3348/kjr.2013.14.1.1
38 schema:datePublished 2018-12
39 schema:datePublishedReg 2018-12-01
40 schema:description OBJECTIVE: To perform a systematic review and meta-analysis on the prognostic value of 18F-FDG PET-derived volume-based parameters regarding metabolic tumor volume (MTV) and total lesion glycolysis (TLG) in patients with ovarian cancer. METHODS: Pubmed and EMBASE databases were searched up to February 12, 2018 for studies which evaluated MTV or TLG as a prognostic factor in ovarian cancer with progression-free (PFS) and overall survival (OS) as the endpoints. Hazard ratios (HRs) were meta-analytically pooled using the random-effects model. Multiple subgroup analyses based on clinicopathological and PET variables were performed. RESULTS: Eight studies with 473 patients were included. The pooled HRs of MTV and TLG for PFS were 2.50 (95% CI 1.79-3.48; p < 0.00001) and 2.42 (95% CI 1.61-3.65; p < 0.0001), respectively. Regarding OS, the pooled HRs of MTV and TLG were 8.06 (95% CI 4.32-15.05; p < 0.00001) and 7.23 (95% CI 3.38-15.50; p < 0.00001), respectively. Multiple subgroup analyses consistently showed that MTV and TLG were significant prognostic factors for PFS with pooled HRs ranging from 2.35 to 2.58 and from 1.73 to 3.35, respectively. CONCLUSIONS: MTV and TLG from 18F-FDG PET were significant prognostic factors in patients with ovarian cancer. Despite the clinical heterogeneity and difference in methodology between the studies, patients with a high MTV or TLG have a higher risk of disease progression or death.
41 schema:genre research_article
42 schema:inLanguage en
43 schema:isAccessibleForFree false
44 schema:isPartOf N589a074e6b914ea6b7dcf2c8cabaf32e
45 N65d86ce022e743bbbd239148ef2efe5b
46 sg:journal.1099601
47 schema:name Prognostic value of volume-based metabolic parameters of 18F-FDG PET/CT in ovarian cancer: a systematic review and meta-analysis
48 schema:pagination 669-677
49 schema:productId N204363ce2c8840e6b7ae7559ec63b2c5
50 N250dd05536f14beda5243774eb9aefc3
51 N4f7699c014e74baba69df08df7b7030c
52 N5c08c844034e402b9d9d876d7430124b
53 Nf939e0d6d7bb451d80439df7cf0691d0
54 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106124539
55 https://doi.org/10.1007/s12149-018-1289-1
56 schema:sdDatePublished 2019-04-11T12:39
57 schema:sdLicense https://scigraph.springernature.com/explorer/license/
58 schema:sdPublisher N396c8a25d47745a7ae9a1c06b4930337
59 schema:url https://link.springer.com/10.1007%2Fs12149-018-1289-1
60 sgo:license sg:explorer/license/
61 sgo:sdDataset articles
62 rdf:type schema:ScholarlyArticle
63 N064882b26c8542c1822dc842530938ab rdf:first sg:person.01146627117.01
64 rdf:rest N914111de707e4ccda241d0d193b3b3fe
65 N204363ce2c8840e6b7ae7559ec63b2c5 schema:name nlm_unique_id
66 schema:value 8913398
67 rdf:type schema:PropertyValue
68 N250dd05536f14beda5243774eb9aefc3 schema:name readcube_id
69 schema:value 60844c297c2f9c939d3301c9293449b68d76d47e5d474b0399775834aed52d93
70 rdf:type schema:PropertyValue
71 N396c8a25d47745a7ae9a1c06b4930337 schema:name Springer Nature - SN SciGraph project
72 rdf:type schema:Organization
73 N4f7699c014e74baba69df08df7b7030c schema:name pubmed_id
74 schema:value 30101392
75 rdf:type schema:PropertyValue
76 N589a074e6b914ea6b7dcf2c8cabaf32e schema:volumeNumber 32
77 rdf:type schema:PublicationVolume
78 N5c08c844034e402b9d9d876d7430124b schema:name dimensions_id
79 schema:value pub.1106124539
80 rdf:type schema:PropertyValue
81 N65d86ce022e743bbbd239148ef2efe5b schema:issueNumber 10
82 rdf:type schema:PublicationIssue
83 N704a0fdc617f484796845e9ae5efd5a1 rdf:first sg:person.011765452170.65
84 rdf:rest N064882b26c8542c1822dc842530938ab
85 N914111de707e4ccda241d0d193b3b3fe rdf:first sg:person.01020616334.36
86 rdf:rest rdf:nil
87 Na8c66874dfac486d8bb94dd54967877a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
88 schema:name Ovarian Neoplasms
89 rdf:type schema:DefinedTerm
90 Naeec3f55d5dd4981803301ebb17e8423 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
91 schema:name Disease-Free Survival
92 rdf:type schema:DefinedTerm
93 Nafb5f282b43e4bd29d576868ec433406 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
94 schema:name Positron Emission Tomography Computed Tomography
95 rdf:type schema:DefinedTerm
96 Nd2733caaf51a43959002548801a9ca75 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
97 schema:name Female
98 rdf:type schema:DefinedTerm
99 Nd5eeb11a60b64fbcbd7551350b704ccb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
100 schema:name Fluorodeoxyglucose F18
101 rdf:type schema:DefinedTerm
102 Ne5ad7d53ed5f4556b0f8ad318e2eae85 rdf:first sg:person.011170071570.09
103 rdf:rest N704a0fdc617f484796845e9ae5efd5a1
104 Ne65de219d7e44dfaac70d46a7539432d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
105 schema:name Humans
106 rdf:type schema:DefinedTerm
107 Nf939e0d6d7bb451d80439df7cf0691d0 schema:name doi
108 schema:value 10.1007/s12149-018-1289-1
109 rdf:type schema:PropertyValue
110 Nfb330569f8724d16a9592a1fb4d09186 rdf:first sg:person.016402717001.03
111 rdf:rest Ne5ad7d53ed5f4556b0f8ad318e2eae85
112 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
113 schema:name Medical and Health Sciences
114 rdf:type schema:DefinedTerm
115 anzsrc-for:1112 schema:inDefinedTermSet anzsrc-for:
116 schema:name Oncology and Carcinogenesis
117 rdf:type schema:DefinedTerm
118 sg:journal.1099601 schema:issn 0914-7187
119 1864-6433
120 schema:name Annals of Nuclear Medicine
121 rdf:type schema:Periodical
122 sg:person.01020616334.36 schema:affiliation https://www.grid.ac/institutes/grid.31501.36
123 schema:familyName Woo
124 schema:givenName Sungmin
125 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01020616334.36
126 rdf:type schema:Person
127 sg:person.011170071570.09 schema:affiliation https://www.grid.ac/institutes/grid.31501.36
128 schema:familyName Kim
129 schema:givenName Hyesung
130 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011170071570.09
131 rdf:type schema:Person
132 sg:person.01146627117.01 schema:affiliation https://www.grid.ac/institutes/grid.413967.e
133 schema:familyName Suh
134 schema:givenName Chong Hyun
135 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01146627117.01
136 rdf:type schema:Person
137 sg:person.011765452170.65 schema:affiliation https://www.grid.ac/institutes/grid.412011.7
138 schema:familyName Kim
139 schema:givenName Yeon Joo
140 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011765452170.65
141 rdf:type schema:Person
142 sg:person.016402717001.03 schema:affiliation https://www.grid.ac/institutes/grid.413967.e
143 schema:familyName Han
144 schema:givenName Sangwon
145 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016402717001.03
146 rdf:type schema:Person
147 sg:pub.10.1007/s00259-014-2803-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1031024771
148 https://doi.org/10.1007/s00259-014-2803-x
149 rdf:type schema:CreativeWork
150 sg:pub.10.1007/s00259-014-2903-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007455399
151 https://doi.org/10.1007/s00259-014-2903-7
152 rdf:type schema:CreativeWork
153 sg:pub.10.1007/s00259-017-3638-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1083736016
154 https://doi.org/10.1007/s00259-017-3638-z
155 rdf:type schema:CreativeWork
156 sg:pub.10.1007/s00259-018-3961-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1101199064
157 https://doi.org/10.1007/s00259-018-3961-z
158 rdf:type schema:CreativeWork
159 sg:pub.10.1007/s00330-015-3729-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020750610
160 https://doi.org/10.1007/s00330-015-3729-9
161 rdf:type schema:CreativeWork
162 sg:pub.10.1007/s00330-016-4368-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026409100
163 https://doi.org/10.1007/s00330-016-4368-5
164 rdf:type schema:CreativeWork
165 sg:pub.10.1007/s13139-014-0303-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025969280
166 https://doi.org/10.1007/s13139-014-0303-3
167 rdf:type schema:CreativeWork
168 sg:pub.10.1186/1745-6215-8-16 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052599734
169 https://doi.org/10.1186/1745-6215-8-16
170 rdf:type schema:CreativeWork
171 sg:pub.10.1245/s10434-011-2153-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1024196126
172 https://doi.org/10.1245/s10434-011-2153-x
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1002/(sici)1097-0258(19981230)17:24<2815::aid-sim110>3.0.co;2-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023335611
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1002/cncr.22974 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039669595
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1002/cncr.24149 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015684380
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1016/j.ejrad.2017.05.036 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085709866
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1016/j.jclinepi.2009.06.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022806278
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1016/j.remnie.2016.01.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036256478
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1016/j.ygyno.2004.07.045 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030412789
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1016/j.ygyno.2014.02.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045923195
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1016/j.ygyno.2014.12.032 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019112970
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1023/a:1008240421028 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056302711
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1097/mnm.0000000000000712 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090564230
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1097/rlu.0b013e31829f57fa schema:sameAs https://app.dimensions.ai/details/publication/pub.1032995158
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1111/cas.12890 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036872322
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1136/bmj.315.7109.629 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062780726
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1136/bmj.327.7414.557 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005003882
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1200/jco.2002.20.5.1248 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083941976
205 rdf:type schema:CreativeWork
206 https://doi.org/10.2967/jnumed.113.133801 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038279828
207 rdf:type schema:CreativeWork
208 https://doi.org/10.3322/caac.21387 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014894112
209 rdf:type schema:CreativeWork
210 https://doi.org/10.3348/kjr.2013.14.1.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028073576
211 rdf:type schema:CreativeWork
212 https://www.grid.ac/institutes/grid.31501.36 schema:alternateName Seoul National University
213 schema:name Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, Republic of Korea
214 Department of Radiology, Seoul National University College of Medicine, Seoul, Republic of Korea
215 Meta-analysis for Imaging studies on Diagnostic test Accuracy and prognosiS (MIDAS) group, Seoul, Republic of Korea
216 rdf:type schema:Organization
217 https://www.grid.ac/institutes/grid.412011.7 schema:alternateName Kangwon National University Hospital
218 schema:name Department of Radiation Oncology, Kangwon National University Hospital, Chuncheon, South Korea
219 rdf:type schema:Organization
220 https://www.grid.ac/institutes/grid.413967.e schema:alternateName Asan Medical Center
221 schema:name Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
222 Department of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
223 Meta-analysis for Imaging studies on Diagnostic test Accuracy and prognosiS (MIDAS) group, Seoul, Republic of Korea
224 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...