Automatic lung segmentation in functional SPECT images using active shape models trained on reference lung shapes from CT View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-12-13

AUTHORS

Grigorios-Aris Cheimariotis, Mariam Al-Mashat, Kostas Haris, Anthony H. Aletras, Jonas Jögi, Marika Bajc, Nicolaos Maglaveras, Einar Heiberg

ABSTRACT

ObjectiveImage segmentation is an essential step in quantifying the extent of reduced or absent lung function. The aim of this study is to develop and validate a new tool for automatic segmentation of lungs in ventilation and perfusion SPECT images and compare automatic and manual SPECT lung segmentations with reference computed tomography (CT) volumes.MethodsA total of 77 subjects (69 patients with obstructive lung disease, and 8 subjects without apparent perfusion of ventilation loss) performed low-dose CT followed by ventilation/perfusion (V/P) SPECT examination in a hybrid gamma camera system. In the training phase, lung shapes from the 57 anatomical low-dose CT images were used to construct two active shape models (right lung and left lung) which were then used for image segmentation. The algorithm was validated in 20 patients, comparing its results to reference delineation of corresponding CT images, and by comparing automatic segmentation to manual delineations in SPECT images.ResultsThe Dice coefficient between automatic SPECT delineations and manual SPECT delineations were 0.83 ± 0.04% for the right and 0.82 ± 0.05% for the left lung. There was statistically significant difference between reference volumes from CT and automatic delineations for the right (R = 0.53, p = 0.02) and left lung (R = 0.69, p < 0.001) in SPECT. There were similar observations when comparing reference volumes from CT and manual delineations in SPECT images, left lung (bias was − 10 ± 491, R = 0.60, p = 0.005) right lung (bias 36 ± 524 ml, R = 0.62, p = 0.004).ConclusionAutomated segmentation on SPECT images are on par with manual segmentation on SPECT images. Relative large volumetric differences between manual delineations of functional SPECT images and anatomical CT images confirms that lung segmentation of functional SPECT images is a challenging task. The current algorithm is a first step towards automatic quantification of wide range of measurements. More... »

PAGES

94-104

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s12149-017-1223-y

DOI

http://dx.doi.org/10.1007/s12149-017-1223-y

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1099691674

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/29236220


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Cardiorespiratory Medicine and Haematology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Algorithms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Automation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Image Processing, Computer-Assisted", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Lung", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Pattern Recognition, Automated", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Reference Standards", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Tomography, Emission-Computed, Single-Photon", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Tomography, X-Ray Computed", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Laboratory of Computing, Medical Informatics and Biomedical-Imaging Technologies, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece", 
          "id": "http://www.grid.ac/institutes/grid.4793.9", 
          "name": [
            "Laboratory of Computing, Medical Informatics and Biomedical-Imaging Technologies, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cheimariotis", 
        "givenName": "Grigorios-Aris", 
        "id": "sg:person.01235272714.71", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01235272714.71"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Clinical Sciences Lund, Clinical Physiology, Sk\u00e5ne University Hospital, Lund University, Lund, Sweden", 
          "id": "http://www.grid.ac/institutes/grid.4514.4", 
          "name": [
            "Department of Clinical Sciences Lund, Clinical Physiology, Sk\u00e5ne University Hospital, Lund University, Lund, Sweden"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Al-Mashat", 
        "givenName": "Mariam", 
        "id": "sg:person.01014551272.45", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01014551272.45"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Laboratory of Computing, Medical Informatics and Biomedical-Imaging Technologies, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece", 
          "id": "http://www.grid.ac/institutes/grid.4793.9", 
          "name": [
            "Laboratory of Computing, Medical Informatics and Biomedical-Imaging Technologies, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Haris", 
        "givenName": "Kostas", 
        "id": "sg:person.014145372501.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014145372501.15"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Clinical Sciences Lund, Clinical Physiology, Sk\u00e5ne University Hospital, Lund University, Lund, Sweden", 
          "id": "http://www.grid.ac/institutes/grid.4514.4", 
          "name": [
            "Laboratory of Computing, Medical Informatics and Biomedical-Imaging Technologies, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece", 
            "Department of Clinical Sciences Lund, Clinical Physiology, Sk\u00e5ne University Hospital, Lund University, Lund, Sweden"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Aletras", 
        "givenName": "Anthony H.", 
        "id": "sg:person.01044222552.06", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01044222552.06"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Clinical Sciences Lund, Clinical Physiology, Sk\u00e5ne University Hospital, Lund University, Lund, Sweden", 
          "id": "http://www.grid.ac/institutes/grid.4514.4", 
          "name": [
            "Department of Clinical Sciences Lund, Clinical Physiology, Sk\u00e5ne University Hospital, Lund University, Lund, Sweden"
          ], 
          "type": "Organization"
        }, 
        "familyName": "J\u00f6gi", 
        "givenName": "Jonas", 
        "id": "sg:person.0604671751.19", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0604671751.19"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Clinical Sciences Lund, Clinical Physiology, Sk\u00e5ne University Hospital, Lund University, Lund, Sweden", 
          "id": "http://www.grid.ac/institutes/grid.4514.4", 
          "name": [
            "Department of Clinical Sciences Lund, Clinical Physiology, Sk\u00e5ne University Hospital, Lund University, Lund, Sweden"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bajc", 
        "givenName": "Marika", 
        "id": "sg:person.01170740331.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01170740331.16"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Laboratory of Computing, Medical Informatics and Biomedical-Imaging Technologies, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece", 
          "id": "http://www.grid.ac/institutes/grid.4793.9", 
          "name": [
            "Laboratory of Computing, Medical Informatics and Biomedical-Imaging Technologies, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Maglaveras", 
        "givenName": "Nicolaos", 
        "id": "sg:person.011101512454.71", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011101512454.71"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Clinical Physiology, Lund University Hospital, 22185, Lund, Sweden", 
          "id": "http://www.grid.ac/institutes/grid.411843.b", 
          "name": [
            "Department of Clinical Sciences Lund, Clinical Physiology, Sk\u00e5ne University Hospital, Lund University, Lund, Sweden", 
            "Department of Biomedical Engineering, Faculty of Engineering, Lund University, Lund, Sweden", 
            "Department of Clinical Physiology, Lund University Hospital, 22185, Lund, Sweden"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Heiberg", 
        "givenName": "Einar", 
        "id": "sg:person.0643341416.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0643341416.42"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s11239-014-1097-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052047385", 
          "https://doi.org/10.1007/s11239-014-1097-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12149-014-0913-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038647134", 
          "https://doi.org/10.1007/s12149-014-0913-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00259-011-1757-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012077845", 
          "https://doi.org/10.1007/s00259-011-1757-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00259-009-1170-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009319143", 
          "https://doi.org/10.1007/s00259-009-1170-5"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-12-13", 
    "datePublishedReg": "2017-12-13", 
    "description": "ObjectiveImage segmentation is an essential step in quantifying the extent of reduced or absent lung function. The aim of this study is to develop and validate a new tool for automatic segmentation of lungs in ventilation and perfusion SPECT images and compare automatic and manual SPECT lung segmentations with reference computed tomography (CT) volumes.MethodsA total of 77 subjects (69 patients with obstructive lung disease, and 8 subjects without apparent perfusion of ventilation loss) performed low-dose CT followed by ventilation/perfusion (V/P) SPECT examination in a hybrid gamma camera system. In the training phase, lung shapes from the 57 anatomical low-dose CT images were used to construct two active shape models (right lung and left lung) which were then used for image segmentation. The algorithm was validated in 20 patients, comparing its results to reference delineation of corresponding CT images, and by comparing automatic segmentation to manual delineations in SPECT images.ResultsThe Dice coefficient between automatic SPECT delineations and manual SPECT delineations were 0.83\u2009\u00b1\u20090.04% for the right and 0.82\u2009\u00b1\u20090.05% for the left lung. There was statistically significant difference between reference volumes from CT and automatic delineations for the right (R\u2009=\u20090.53, p\u2009=\u20090.02) and left lung (R\u2009=\u20090.69, p\u2009<\u20090.001) in SPECT. There were similar observations when comparing reference volumes from CT and manual delineations in SPECT images, left lung (bias was \u2212\u200910\u2009\u00b1\u2009491, R\u2009=\u20090.60, p\u2009=\u20090.005) right lung (bias 36\u2009\u00b1\u2009524\u00a0ml, R\u2009=\u20090.62, p\u2009=\u20090.004).ConclusionAutomated segmentation on SPECT images are on par with manual segmentation on SPECT images. Relative large volumetric differences between manual delineations of functional SPECT images and anatomical CT images confirms that lung segmentation of functional SPECT images is a challenging task. The current algorithm is a first step towards automatic quantification of wide range of measurements.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s12149-017-1223-y", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1099601", 
        "issn": [
          "0914-7187", 
          "1864-6433"
        ], 
        "name": "Annals of Nuclear Medicine", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "32"
      }
    ], 
    "keywords": [
      "SPECT images", 
      "low-dose CT", 
      "CT images", 
      "anatomical CT images", 
      "lung function", 
      "left lung", 
      "right lung", 
      "SPECT examination", 
      "lung", 
      "perfusion SPECT images", 
      "volumetric differences", 
      "CT", 
      "significant differences", 
      "lung shape", 
      "corresponding CT images", 
      "manual delineation", 
      "low-dose CT images", 
      "reference volume", 
      "reference delineations", 
      "patients", 
      "Similar observations", 
      "gamma camera system", 
      "tomography volumes", 
      "ventilation", 
      "SPECT", 
      "delineation", 
      "total", 
      "differences", 
      "volume", 
      "examination", 
      "subjects", 
      "lung segmentation", 
      "aim", 
      "automatic quantification", 
      "manual segmentation", 
      "essential step", 
      "new tool", 
      "study", 
      "automatic delineation", 
      "Dice coefficient", 
      "function", 
      "extent", 
      "quantification", 
      "rights", 
      "model", 
      "results", 
      "first step", 
      "automatic segmentation", 
      "images", 
      "Automatic Lung Segmentation", 
      "wide range", 
      "tool", 
      "observations", 
      "reference", 
      "step", 
      "measurements", 
      "par", 
      "phase", 
      "task", 
      "system", 
      "range", 
      "current algorithms", 
      "camera system", 
      "training phase", 
      "segmentation", 
      "coefficient", 
      "shape", 
      "challenging task", 
      "shape model", 
      "Active Shape Model", 
      "algorithm", 
      "image segmentation"
    ], 
    "name": "Automatic lung segmentation in functional SPECT images using active shape models trained on reference lung shapes from CT", 
    "pagination": "94-104", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1099691674"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s12149-017-1223-y"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "29236220"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s12149-017-1223-y", 
      "https://app.dimensions.ai/details/publication/pub.1099691674"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-10-01T06:42", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/article/article_723.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s12149-017-1223-y"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12149-017-1223-y'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12149-017-1223-y'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12149-017-1223-y'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12149-017-1223-y'


 

This table displays all metadata directly associated to this object as RDF triples.

243 TRIPLES      21 PREDICATES      110 URIs      98 LITERALS      16 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s12149-017-1223-y schema:about N2501073399984d8eb6671af839ade58b
2 N26098acf4a0144a899bf41ea83d9e405
3 N4df7e6c9b64343e89bd51f50898a80b4
4 N58a752814343483093ce5e75d799e056
5 N5cea357ef2074a089b12c2c508765ee3
6 N869618f56ca14a83a08aa39afaa685db
7 Nb517a5fc310c4375900ae535645be05f
8 Nb645604cdcdd48a3b2fcb7772b09629a
9 Nd3358dc48ff94483bfd301da4e1d694c
10 anzsrc-for:11
11 anzsrc-for:1102
12 schema:author N19adf1bad5aa477799f17d31f54249bb
13 schema:citation sg:pub.10.1007/s00259-009-1170-5
14 sg:pub.10.1007/s00259-011-1757-5
15 sg:pub.10.1007/s11239-014-1097-y
16 sg:pub.10.1007/s12149-014-0913-y
17 schema:datePublished 2017-12-13
18 schema:datePublishedReg 2017-12-13
19 schema:description ObjectiveImage segmentation is an essential step in quantifying the extent of reduced or absent lung function. The aim of this study is to develop and validate a new tool for automatic segmentation of lungs in ventilation and perfusion SPECT images and compare automatic and manual SPECT lung segmentations with reference computed tomography (CT) volumes.MethodsA total of 77 subjects (69 patients with obstructive lung disease, and 8 subjects without apparent perfusion of ventilation loss) performed low-dose CT followed by ventilation/perfusion (V/P) SPECT examination in a hybrid gamma camera system. In the training phase, lung shapes from the 57 anatomical low-dose CT images were used to construct two active shape models (right lung and left lung) which were then used for image segmentation. The algorithm was validated in 20 patients, comparing its results to reference delineation of corresponding CT images, and by comparing automatic segmentation to manual delineations in SPECT images.ResultsThe Dice coefficient between automatic SPECT delineations and manual SPECT delineations were 0.83 ± 0.04% for the right and 0.82 ± 0.05% for the left lung. There was statistically significant difference between reference volumes from CT and automatic delineations for the right (R = 0.53, p = 0.02) and left lung (R = 0.69, p < 0.001) in SPECT. There were similar observations when comparing reference volumes from CT and manual delineations in SPECT images, left lung (bias was − 10 ± 491, R = 0.60, p = 0.005) right lung (bias 36 ± 524 ml, R = 0.62, p = 0.004).ConclusionAutomated segmentation on SPECT images are on par with manual segmentation on SPECT images. Relative large volumetric differences between manual delineations of functional SPECT images and anatomical CT images confirms that lung segmentation of functional SPECT images is a challenging task. The current algorithm is a first step towards automatic quantification of wide range of measurements.
20 schema:genre article
21 schema:isAccessibleForFree true
22 schema:isPartOf N155d839d18124312aefb79dd2ec8c915
23 Nb9f3dde4f82344abbb67d91d05fff5d7
24 sg:journal.1099601
25 schema:keywords Active Shape Model
26 Automatic Lung Segmentation
27 CT
28 CT images
29 Dice coefficient
30 SPECT
31 SPECT examination
32 SPECT images
33 Similar observations
34 aim
35 algorithm
36 anatomical CT images
37 automatic delineation
38 automatic quantification
39 automatic segmentation
40 camera system
41 challenging task
42 coefficient
43 corresponding CT images
44 current algorithms
45 delineation
46 differences
47 essential step
48 examination
49 extent
50 first step
51 function
52 gamma camera system
53 image segmentation
54 images
55 left lung
56 low-dose CT
57 low-dose CT images
58 lung
59 lung function
60 lung segmentation
61 lung shape
62 manual delineation
63 manual segmentation
64 measurements
65 model
66 new tool
67 observations
68 par
69 patients
70 perfusion SPECT images
71 phase
72 quantification
73 range
74 reference
75 reference delineations
76 reference volume
77 results
78 right lung
79 rights
80 segmentation
81 shape
82 shape model
83 significant differences
84 step
85 study
86 subjects
87 system
88 task
89 tomography volumes
90 tool
91 total
92 training phase
93 ventilation
94 volume
95 volumetric differences
96 wide range
97 schema:name Automatic lung segmentation in functional SPECT images using active shape models trained on reference lung shapes from CT
98 schema:pagination 94-104
99 schema:productId N7657f790a8c64ce399886dbee8254f09
100 Nc476ca3b75c6479c972eb88cb8813c10
101 Nd6377e8517f241f8bbe70c99fd21d992
102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099691674
103 https://doi.org/10.1007/s12149-017-1223-y
104 schema:sdDatePublished 2022-10-01T06:42
105 schema:sdLicense https://scigraph.springernature.com/explorer/license/
106 schema:sdPublisher Na4f71c5d7bff4dd9bb5040249f3782b3
107 schema:url https://doi.org/10.1007/s12149-017-1223-y
108 sgo:license sg:explorer/license/
109 sgo:sdDataset articles
110 rdf:type schema:ScholarlyArticle
111 N10c98a711dcb4282b34be3bebe3151e8 rdf:first sg:person.0604671751.19
112 rdf:rest N978a28001d0143d595b11422bc89ed17
113 N155d839d18124312aefb79dd2ec8c915 schema:volumeNumber 32
114 rdf:type schema:PublicationVolume
115 N19adf1bad5aa477799f17d31f54249bb rdf:first sg:person.01235272714.71
116 rdf:rest N6d4b6011d9444beeaa0d01db425caf7b
117 N2501073399984d8eb6671af839ade58b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
118 schema:name Humans
119 rdf:type schema:DefinedTerm
120 N26098acf4a0144a899bf41ea83d9e405 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
121 schema:name Pattern Recognition, Automated
122 rdf:type schema:DefinedTerm
123 N418ba07bf4bb433e8678b92478cac0e7 rdf:first sg:person.014145372501.15
124 rdf:rest Nf86b10d508514b9b8aa06bbefef8ad27
125 N4cdfa50499b44f7ea517fb8f49340244 rdf:first sg:person.011101512454.71
126 rdf:rest N6cb5e3f7fe274f829d587d96c20d0983
127 N4df7e6c9b64343e89bd51f50898a80b4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
128 schema:name Tomography, X-Ray Computed
129 rdf:type schema:DefinedTerm
130 N58a752814343483093ce5e75d799e056 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
131 schema:name Algorithms
132 rdf:type schema:DefinedTerm
133 N5cea357ef2074a089b12c2c508765ee3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
134 schema:name Image Processing, Computer-Assisted
135 rdf:type schema:DefinedTerm
136 N6cb5e3f7fe274f829d587d96c20d0983 rdf:first sg:person.0643341416.42
137 rdf:rest rdf:nil
138 N6d4b6011d9444beeaa0d01db425caf7b rdf:first sg:person.01014551272.45
139 rdf:rest N418ba07bf4bb433e8678b92478cac0e7
140 N7657f790a8c64ce399886dbee8254f09 schema:name doi
141 schema:value 10.1007/s12149-017-1223-y
142 rdf:type schema:PropertyValue
143 N869618f56ca14a83a08aa39afaa685db schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
144 schema:name Lung
145 rdf:type schema:DefinedTerm
146 N978a28001d0143d595b11422bc89ed17 rdf:first sg:person.01170740331.16
147 rdf:rest N4cdfa50499b44f7ea517fb8f49340244
148 Na4f71c5d7bff4dd9bb5040249f3782b3 schema:name Springer Nature - SN SciGraph project
149 rdf:type schema:Organization
150 Nb517a5fc310c4375900ae535645be05f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
151 schema:name Reference Standards
152 rdf:type schema:DefinedTerm
153 Nb645604cdcdd48a3b2fcb7772b09629a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
154 schema:name Tomography, Emission-Computed, Single-Photon
155 rdf:type schema:DefinedTerm
156 Nb9f3dde4f82344abbb67d91d05fff5d7 schema:issueNumber 2
157 rdf:type schema:PublicationIssue
158 Nc476ca3b75c6479c972eb88cb8813c10 schema:name dimensions_id
159 schema:value pub.1099691674
160 rdf:type schema:PropertyValue
161 Nd3358dc48ff94483bfd301da4e1d694c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
162 schema:name Automation
163 rdf:type schema:DefinedTerm
164 Nd6377e8517f241f8bbe70c99fd21d992 schema:name pubmed_id
165 schema:value 29236220
166 rdf:type schema:PropertyValue
167 Nf86b10d508514b9b8aa06bbefef8ad27 rdf:first sg:person.01044222552.06
168 rdf:rest N10c98a711dcb4282b34be3bebe3151e8
169 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
170 schema:name Medical and Health Sciences
171 rdf:type schema:DefinedTerm
172 anzsrc-for:1102 schema:inDefinedTermSet anzsrc-for:
173 schema:name Cardiorespiratory Medicine and Haematology
174 rdf:type schema:DefinedTerm
175 sg:journal.1099601 schema:issn 0914-7187
176 1864-6433
177 schema:name Annals of Nuclear Medicine
178 schema:publisher Springer Nature
179 rdf:type schema:Periodical
180 sg:person.01014551272.45 schema:affiliation grid-institutes:grid.4514.4
181 schema:familyName Al-Mashat
182 schema:givenName Mariam
183 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01014551272.45
184 rdf:type schema:Person
185 sg:person.01044222552.06 schema:affiliation grid-institutes:grid.4514.4
186 schema:familyName Aletras
187 schema:givenName Anthony H.
188 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01044222552.06
189 rdf:type schema:Person
190 sg:person.011101512454.71 schema:affiliation grid-institutes:grid.4793.9
191 schema:familyName Maglaveras
192 schema:givenName Nicolaos
193 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011101512454.71
194 rdf:type schema:Person
195 sg:person.01170740331.16 schema:affiliation grid-institutes:grid.4514.4
196 schema:familyName Bajc
197 schema:givenName Marika
198 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01170740331.16
199 rdf:type schema:Person
200 sg:person.01235272714.71 schema:affiliation grid-institutes:grid.4793.9
201 schema:familyName Cheimariotis
202 schema:givenName Grigorios-Aris
203 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01235272714.71
204 rdf:type schema:Person
205 sg:person.014145372501.15 schema:affiliation grid-institutes:grid.4793.9
206 schema:familyName Haris
207 schema:givenName Kostas
208 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014145372501.15
209 rdf:type schema:Person
210 sg:person.0604671751.19 schema:affiliation grid-institutes:grid.4514.4
211 schema:familyName Jögi
212 schema:givenName Jonas
213 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0604671751.19
214 rdf:type schema:Person
215 sg:person.0643341416.42 schema:affiliation grid-institutes:grid.411843.b
216 schema:familyName Heiberg
217 schema:givenName Einar
218 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0643341416.42
219 rdf:type schema:Person
220 sg:pub.10.1007/s00259-009-1170-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009319143
221 https://doi.org/10.1007/s00259-009-1170-5
222 rdf:type schema:CreativeWork
223 sg:pub.10.1007/s00259-011-1757-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012077845
224 https://doi.org/10.1007/s00259-011-1757-5
225 rdf:type schema:CreativeWork
226 sg:pub.10.1007/s11239-014-1097-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1052047385
227 https://doi.org/10.1007/s11239-014-1097-y
228 rdf:type schema:CreativeWork
229 sg:pub.10.1007/s12149-014-0913-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1038647134
230 https://doi.org/10.1007/s12149-014-0913-y
231 rdf:type schema:CreativeWork
232 grid-institutes:grid.411843.b schema:alternateName Department of Clinical Physiology, Lund University Hospital, 22185, Lund, Sweden
233 schema:name Department of Biomedical Engineering, Faculty of Engineering, Lund University, Lund, Sweden
234 Department of Clinical Physiology, Lund University Hospital, 22185, Lund, Sweden
235 Department of Clinical Sciences Lund, Clinical Physiology, Skåne University Hospital, Lund University, Lund, Sweden
236 rdf:type schema:Organization
237 grid-institutes:grid.4514.4 schema:alternateName Department of Clinical Sciences Lund, Clinical Physiology, Skåne University Hospital, Lund University, Lund, Sweden
238 schema:name Department of Clinical Sciences Lund, Clinical Physiology, Skåne University Hospital, Lund University, Lund, Sweden
239 Laboratory of Computing, Medical Informatics and Biomedical-Imaging Technologies, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
240 rdf:type schema:Organization
241 grid-institutes:grid.4793.9 schema:alternateName Laboratory of Computing, Medical Informatics and Biomedical-Imaging Technologies, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
242 schema:name Laboratory of Computing, Medical Informatics and Biomedical-Imaging Technologies, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
243 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...