Assessment of intratumor heterogeneity in mesenchymal uterine tumor by an 18F-FDG PET/CT texture analysis View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2017-12

AUTHORS

Tetsuya Tsujikawa, Makoto Yamamoto, Kunihiro Shono, Shizuka Yamada, Hideaki Tsuyoshi, Yasushi Kiyono, Hirohiko Kimura, Hidehiko Okazawa, Yoshio Yoshida

ABSTRACT

OBJECTIVE: The aim of this study was to retrospectively evaluate the clinical significance of 18F-FDG PET/CT textural features for discriminating uterine sarcoma from leiomyoma. METHODS: Fifty-five patients with suspected uterine sarcoma based on ultrasound and MRI findings who underwent pretreatment 18F-FDG PET/CT were included. Fifteen patients were histopathologically proven to have uterine sarcoma, 14 patients by surgical operation and one by biopsy, and 40 patients were diagnosed with leiomyoma by surgical operation or in a follow-up for at least 2 years. A texture analysis was performed on PET/CT images from which second- and higher order textural features were extracted in addition to standardized uptake values (SUVs) and other first-order features. The accuracy of PET features for differentiating between uterine sarcoma and leiomyoma was evaluated using a receiver-operating-characteristic (ROC) analysis. RESULTS: The intratumor distribution of 18F-FDG was more heterogeneous in uterine sarcoma than in leiomyoma. Entropy, correlation, and uniformity calculated from normalized gray-level co-occurrence matrices and SUV standard deviation derived from histogram statistics showed greater area under the ROC curves (AUCs) than did maximum SUV for differentiating between sarcoma and leiomyoma. Entropy, as a single feature, yielded the greatest AUC of 0.974 and the optimal cut-off value of 2.85 for entropy provided 93% sensitivity, 90% specificity, and 92% accuracy. When combining conventional features with textural ones, maximum SUV (cutoff: 6.0) combined with entropy (2.85) and correlation (0.73) provided the best diagnostic performance (100% sensitivity, 94% specificity, and 95% accuracy). CONCLUSIONS: In combination with the conventional histogram statistics and/or volumetric parameters, 18F-FDG PET/CT textural features reflecting intratumor metabolic heterogeneity are useful for differentiating between uterine sarcoma and leiomyoma. More... »

PAGES

752-757

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s12149-017-1208-x

DOI

http://dx.doi.org/10.1007/s12149-017-1208-x

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1091599124

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/28905201


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Clinical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adult", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged, 80 and over", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Fluorodeoxyglucose F18", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Mesoderm", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Positron Emission Tomography Computed Tomography", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "ROC Curve", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Retrospective Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Uterine Neoplasms", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Fukui", 
          "id": "https://www.grid.ac/institutes/grid.163577.1", 
          "name": [
            "Biomedical Imaging Research Center, University of Fukui, 23-3 Matsuoka-Shimoaizuki, Eiheiji-cho, 910-1193, Fukui, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tsujikawa", 
        "givenName": "Tetsuya", 
        "id": "sg:person.01237563020.08", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01237563020.08"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Fukui", 
          "id": "https://www.grid.ac/institutes/grid.163577.1", 
          "name": [
            "Department of Obstetrics and Gynecology, Faculty of Medical Sciences, University of Fukui, Fukui, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yamamoto", 
        "givenName": "Makoto", 
        "id": "sg:person.01107172053.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01107172053.23"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Fukui", 
          "id": "https://www.grid.ac/institutes/grid.163577.1", 
          "name": [
            "Biomedical Imaging Research Center, University of Fukui, 23-3 Matsuoka-Shimoaizuki, Eiheiji-cho, 910-1193, Fukui, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shono", 
        "givenName": "Kunihiro", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Fukui", 
          "id": "https://www.grid.ac/institutes/grid.163577.1", 
          "name": [
            "Department of Obstetrics and Gynecology, Faculty of Medical Sciences, University of Fukui, Fukui, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yamada", 
        "givenName": "Shizuka", 
        "id": "sg:person.0624744733.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0624744733.44"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Fukui", 
          "id": "https://www.grid.ac/institutes/grid.163577.1", 
          "name": [
            "Department of Obstetrics and Gynecology, Faculty of Medical Sciences, University of Fukui, Fukui, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tsuyoshi", 
        "givenName": "Hideaki", 
        "id": "sg:person.01274434200.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01274434200.13"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Fukui", 
          "id": "https://www.grid.ac/institutes/grid.163577.1", 
          "name": [
            "Biomedical Imaging Research Center, University of Fukui, 23-3 Matsuoka-Shimoaizuki, Eiheiji-cho, 910-1193, Fukui, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kiyono", 
        "givenName": "Yasushi", 
        "id": "sg:person.01307237040.21", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01307237040.21"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Fukui", 
          "id": "https://www.grid.ac/institutes/grid.163577.1", 
          "name": [
            "Department of Radiology, Faculty of Medical Sciences, University of Fukui, Fukui, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kimura", 
        "givenName": "Hirohiko", 
        "id": "sg:person.0766501102.93", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0766501102.93"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Fukui", 
          "id": "https://www.grid.ac/institutes/grid.163577.1", 
          "name": [
            "Biomedical Imaging Research Center, University of Fukui, 23-3 Matsuoka-Shimoaizuki, Eiheiji-cho, 910-1193, Fukui, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Okazawa", 
        "givenName": "Hidehiko", 
        "id": "sg:person.0623355330.58", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0623355330.58"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Fukui", 
          "id": "https://www.grid.ac/institutes/grid.163577.1", 
          "name": [
            "Department of Obstetrics and Gynecology, Faculty of Medical Sciences, University of Fukui, Fukui, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yoshida", 
        "givenName": "Yoshio", 
        "id": "sg:person.0742252642.08", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0742252642.08"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1148/radiol.2015141309", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002276302"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00259-012-2332-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004417333", 
          "https://doi.org/10.1007/s00259-012-2332-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.patcog.2008.08.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005816861"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms5006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009469125", 
          "https://doi.org/10.1038/ncomms5006"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jmri.24998", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010842043"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00259-011-1787-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011044851", 
          "https://doi.org/10.1007/s00259-011-1787-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijrobp.2005.02.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016212813"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12149-014-0895-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022490401", 
          "https://doi.org/10.1007/s12149-014-0895-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.bpobgyn.2011.06.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030723290"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2967/jnumed.112.119289", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031040098"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejmoa1113205", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031166230"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2967/jnumed.110.082404", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040174324"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ygyno.2009.09.023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044079369"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ajog.2013.12.028", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046466206"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00259-016-3427-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050524814", 
          "https://doi.org/10.1007/s00259-016-3427-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00259-016-3427-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050524814", 
          "https://doi.org/10.1007/s00259-016-3427-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00259-012-2247-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051316850", 
          "https://doi.org/10.1007/s00259-012-2247-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-009-1471-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051719875", 
          "https://doi.org/10.1007/s00330-009-1471-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-009-1471-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051719875", 
          "https://doi.org/10.1007/s00330-009-1471-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-009-1471-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051719875", 
          "https://doi.org/10.1007/s00330-009-1471-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2967/jnumed.107.047142", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052587843"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2214/ajr.09.4074", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069300696"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2531595", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069977037"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2967/jnumed.116.173708", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070928497"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2967/jnumed.116.181859", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070928645"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3892/or_00000734", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071537518"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-12", 
    "datePublishedReg": "2017-12-01", 
    "description": "OBJECTIVE: The aim of this study was to retrospectively evaluate the clinical significance of 18F-FDG PET/CT textural features for discriminating uterine sarcoma from leiomyoma.\nMETHODS: Fifty-five patients with suspected uterine sarcoma based on ultrasound and MRI findings who underwent pretreatment 18F-FDG PET/CT were included. Fifteen patients were histopathologically proven to have uterine sarcoma, 14 patients by surgical operation and one by biopsy, and 40 patients were diagnosed with leiomyoma by surgical operation or in a follow-up for at least 2\u00a0years. A texture analysis was performed on PET/CT images from which second- and higher order textural features were extracted in addition to standardized uptake values (SUVs) and other first-order features. The accuracy of PET features for differentiating between uterine sarcoma and leiomyoma was evaluated using a receiver-operating-characteristic (ROC) analysis.\nRESULTS: The intratumor distribution of 18F-FDG was more heterogeneous in uterine sarcoma than in leiomyoma. Entropy, correlation, and uniformity calculated from normalized gray-level co-occurrence matrices and SUV standard deviation derived from histogram statistics showed greater area under the ROC curves (AUCs) than did maximum SUV for differentiating between sarcoma and leiomyoma. Entropy, as a single feature, yielded the greatest AUC of 0.974 and the optimal cut-off value of 2.85 for entropy provided 93% sensitivity, 90% specificity, and 92% accuracy. When combining conventional features with textural ones, maximum SUV (cutoff: 6.0) combined with entropy (2.85) and correlation (0.73) provided the best diagnostic performance (100% sensitivity, 94% specificity, and 95% accuracy).\nCONCLUSIONS: In combination with the conventional histogram statistics and/or volumetric parameters, 18F-FDG PET/CT textural features reflecting intratumor metabolic heterogeneity are useful for differentiating between uterine sarcoma and leiomyoma.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s12149-017-1208-x", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.5925190", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.5935661", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.5862654", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1099601", 
        "issn": [
          "0914-7187", 
          "1864-6433"
        ], 
        "name": "Annals of Nuclear Medicine", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "10", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "31"
      }
    ], 
    "name": "Assessment of intratumor heterogeneity in mesenchymal uterine tumor by an 18F-FDG PET/CT texture analysis", 
    "pagination": "752-757", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "591180d09b4c362c2d027f95606e4f0fb93138f38423c2ab33dcdeb8b33128b7"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "28905201"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "8913398"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s12149-017-1208-x"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1091599124"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s12149-017-1208-x", 
      "https://app.dimensions.ai/details/publication/pub.1091599124"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T02:11", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8700_00000525.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs12149-017-1208-x"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12149-017-1208-x'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12149-017-1208-x'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12149-017-1208-x'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12149-017-1208-x'


 

This table displays all metadata directly associated to this object as RDF triples.

260 TRIPLES      21 PREDICATES      65 URIs      34 LITERALS      22 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s12149-017-1208-x schema:about N250feaa06db544d581f1aeea5c0ae805
2 N2550acc04aaf42bcb2201ac79a629a40
3 N4373a981d4854798aa9c284c5a18fff3
4 N6a5145a2bbbc43a9a2811218bec2fecf
5 N6f3d3de9e51e4a9b97fb170e0b75e2b7
6 N880b5331dadb49d993fefe72968b6fe3
7 N8855a90af84d4c1b916430833065b4ff
8 Na919879700ff472487c4eee6ff35ce8b
9 Nb670262d4fb546ecbcf8a81b4f55ed5e
10 Nc88a83cf743448ba8febcfcf9f90f8ae
11 Ndc29bd1112e34595afbfd741573878f1
12 Neae1e3815e7640e28941e718be98266c
13 Nf834528ad69841d78731809ef3cfedb0
14 anzsrc-for:11
15 anzsrc-for:1103
16 schema:author N80d55a62f4874d4e9e425f5d88c5e6da
17 schema:citation sg:pub.10.1007/s00259-011-1787-z
18 sg:pub.10.1007/s00259-012-2247-0
19 sg:pub.10.1007/s00259-012-2332-4
20 sg:pub.10.1007/s00259-016-3427-0
21 sg:pub.10.1007/s00330-009-1471-x
22 sg:pub.10.1007/s12149-014-0895-9
23 sg:pub.10.1038/ncomms5006
24 https://doi.org/10.1002/jmri.24998
25 https://doi.org/10.1016/j.ajog.2013.12.028
26 https://doi.org/10.1016/j.bpobgyn.2011.06.002
27 https://doi.org/10.1016/j.ijrobp.2005.02.009
28 https://doi.org/10.1016/j.patcog.2008.08.011
29 https://doi.org/10.1016/j.ygyno.2009.09.023
30 https://doi.org/10.1056/nejmoa1113205
31 https://doi.org/10.1148/radiol.2015141309
32 https://doi.org/10.2214/ajr.09.4074
33 https://doi.org/10.2307/2531595
34 https://doi.org/10.2967/jnumed.107.047142
35 https://doi.org/10.2967/jnumed.110.082404
36 https://doi.org/10.2967/jnumed.112.119289
37 https://doi.org/10.2967/jnumed.116.173708
38 https://doi.org/10.2967/jnumed.116.181859
39 https://doi.org/10.3892/or_00000734
40 schema:datePublished 2017-12
41 schema:datePublishedReg 2017-12-01
42 schema:description OBJECTIVE: The aim of this study was to retrospectively evaluate the clinical significance of 18F-FDG PET/CT textural features for discriminating uterine sarcoma from leiomyoma. METHODS: Fifty-five patients with suspected uterine sarcoma based on ultrasound and MRI findings who underwent pretreatment 18F-FDG PET/CT were included. Fifteen patients were histopathologically proven to have uterine sarcoma, 14 patients by surgical operation and one by biopsy, and 40 patients were diagnosed with leiomyoma by surgical operation or in a follow-up for at least 2 years. A texture analysis was performed on PET/CT images from which second- and higher order textural features were extracted in addition to standardized uptake values (SUVs) and other first-order features. The accuracy of PET features for differentiating between uterine sarcoma and leiomyoma was evaluated using a receiver-operating-characteristic (ROC) analysis. RESULTS: The intratumor distribution of 18F-FDG was more heterogeneous in uterine sarcoma than in leiomyoma. Entropy, correlation, and uniformity calculated from normalized gray-level co-occurrence matrices and SUV standard deviation derived from histogram statistics showed greater area under the ROC curves (AUCs) than did maximum SUV for differentiating between sarcoma and leiomyoma. Entropy, as a single feature, yielded the greatest AUC of 0.974 and the optimal cut-off value of 2.85 for entropy provided 93% sensitivity, 90% specificity, and 92% accuracy. When combining conventional features with textural ones, maximum SUV (cutoff: 6.0) combined with entropy (2.85) and correlation (0.73) provided the best diagnostic performance (100% sensitivity, 94% specificity, and 95% accuracy). CONCLUSIONS: In combination with the conventional histogram statistics and/or volumetric parameters, 18F-FDG PET/CT textural features reflecting intratumor metabolic heterogeneity are useful for differentiating between uterine sarcoma and leiomyoma.
43 schema:genre research_article
44 schema:inLanguage en
45 schema:isAccessibleForFree false
46 schema:isPartOf N97576c94291843c090fa4d8e6662b9d0
47 Nf8f22a04c0944daf944c4f30b2811ff3
48 sg:journal.1099601
49 schema:name Assessment of intratumor heterogeneity in mesenchymal uterine tumor by an 18F-FDG PET/CT texture analysis
50 schema:pagination 752-757
51 schema:productId N5bee570269fc439c84eb52a9688dd510
52 N5d96d3b964414802a4db31e811be3328
53 N8874e4b24fe24e97a92c6e02b48f973b
54 Ne221a93ec23c48d7b19b605189992254
55 Nf3b344e2e4e34f639f67d46e5d28c531
56 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091599124
57 https://doi.org/10.1007/s12149-017-1208-x
58 schema:sdDatePublished 2019-04-11T02:11
59 schema:sdLicense https://scigraph.springernature.com/explorer/license/
60 schema:sdPublisher N59c4d1fef4a14ffd9602b5a51ef07ed6
61 schema:url http://link.springer.com/10.1007%2Fs12149-017-1208-x
62 sgo:license sg:explorer/license/
63 sgo:sdDataset articles
64 rdf:type schema:ScholarlyArticle
65 N07aa2e48e15c4f808a788e1a8f7b7f70 rdf:first sg:person.01307237040.21
66 rdf:rest Ne4a437f4145645e6a600a3b7cdb0b9ab
67 N250feaa06db544d581f1aeea5c0ae805 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
68 schema:name Mesoderm
69 rdf:type schema:DefinedTerm
70 N2550acc04aaf42bcb2201ac79a629a40 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
71 schema:name Male
72 rdf:type schema:DefinedTerm
73 N420cef6be39b4a20aeba52b4b0773db0 schema:affiliation https://www.grid.ac/institutes/grid.163577.1
74 schema:familyName Shono
75 schema:givenName Kunihiro
76 rdf:type schema:Person
77 N4373a981d4854798aa9c284c5a18fff3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
78 schema:name Retrospective Studies
79 rdf:type schema:DefinedTerm
80 N44efcd14abcd4122b10c446c2dcfee62 rdf:first sg:person.01274434200.13
81 rdf:rest N07aa2e48e15c4f808a788e1a8f7b7f70
82 N5082b6cded764d839a2dcbee7d6f896e rdf:first sg:person.0624744733.44
83 rdf:rest N44efcd14abcd4122b10c446c2dcfee62
84 N59c4d1fef4a14ffd9602b5a51ef07ed6 schema:name Springer Nature - SN SciGraph project
85 rdf:type schema:Organization
86 N5bee570269fc439c84eb52a9688dd510 schema:name dimensions_id
87 schema:value pub.1091599124
88 rdf:type schema:PropertyValue
89 N5d96d3b964414802a4db31e811be3328 schema:name readcube_id
90 schema:value 591180d09b4c362c2d027f95606e4f0fb93138f38423c2ab33dcdeb8b33128b7
91 rdf:type schema:PropertyValue
92 N686eac53373c404a9922b89609769a0a rdf:first N420cef6be39b4a20aeba52b4b0773db0
93 rdf:rest N5082b6cded764d839a2dcbee7d6f896e
94 N6a5145a2bbbc43a9a2811218bec2fecf schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
95 schema:name Positron Emission Tomography Computed Tomography
96 rdf:type schema:DefinedTerm
97 N6f3d3de9e51e4a9b97fb170e0b75e2b7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
98 schema:name Uterine Neoplasms
99 rdf:type schema:DefinedTerm
100 N71dcc09d57d043e8b4e7e7b21a83970c rdf:first sg:person.0623355330.58
101 rdf:rest N75bf32062d664ef184873c2247989a52
102 N75bf32062d664ef184873c2247989a52 rdf:first sg:person.0742252642.08
103 rdf:rest rdf:nil
104 N80d55a62f4874d4e9e425f5d88c5e6da rdf:first sg:person.01237563020.08
105 rdf:rest Nccc4b189ad4646afa1509596ffa14196
106 N880b5331dadb49d993fefe72968b6fe3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
107 schema:name Fluorodeoxyglucose F18
108 rdf:type schema:DefinedTerm
109 N8855a90af84d4c1b916430833065b4ff schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
110 schema:name Adult
111 rdf:type schema:DefinedTerm
112 N8874e4b24fe24e97a92c6e02b48f973b schema:name nlm_unique_id
113 schema:value 8913398
114 rdf:type schema:PropertyValue
115 N97576c94291843c090fa4d8e6662b9d0 schema:volumeNumber 31
116 rdf:type schema:PublicationVolume
117 Na919879700ff472487c4eee6ff35ce8b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
118 schema:name ROC Curve
119 rdf:type schema:DefinedTerm
120 Nb670262d4fb546ecbcf8a81b4f55ed5e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
121 schema:name Humans
122 rdf:type schema:DefinedTerm
123 Nc88a83cf743448ba8febcfcf9f90f8ae schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
124 schema:name Aged, 80 and over
125 rdf:type schema:DefinedTerm
126 Nccc4b189ad4646afa1509596ffa14196 rdf:first sg:person.01107172053.23
127 rdf:rest N686eac53373c404a9922b89609769a0a
128 Ndc29bd1112e34595afbfd741573878f1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
129 schema:name Middle Aged
130 rdf:type schema:DefinedTerm
131 Ne221a93ec23c48d7b19b605189992254 schema:name doi
132 schema:value 10.1007/s12149-017-1208-x
133 rdf:type schema:PropertyValue
134 Ne4a437f4145645e6a600a3b7cdb0b9ab rdf:first sg:person.0766501102.93
135 rdf:rest N71dcc09d57d043e8b4e7e7b21a83970c
136 Neae1e3815e7640e28941e718be98266c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
137 schema:name Female
138 rdf:type schema:DefinedTerm
139 Nf3b344e2e4e34f639f67d46e5d28c531 schema:name pubmed_id
140 schema:value 28905201
141 rdf:type schema:PropertyValue
142 Nf834528ad69841d78731809ef3cfedb0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
143 schema:name Aged
144 rdf:type schema:DefinedTerm
145 Nf8f22a04c0944daf944c4f30b2811ff3 schema:issueNumber 10
146 rdf:type schema:PublicationIssue
147 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
148 schema:name Medical and Health Sciences
149 rdf:type schema:DefinedTerm
150 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
151 schema:name Clinical Sciences
152 rdf:type schema:DefinedTerm
153 sg:grant.5862654 http://pending.schema.org/fundedItem sg:pub.10.1007/s12149-017-1208-x
154 rdf:type schema:MonetaryGrant
155 sg:grant.5925190 http://pending.schema.org/fundedItem sg:pub.10.1007/s12149-017-1208-x
156 rdf:type schema:MonetaryGrant
157 sg:grant.5935661 http://pending.schema.org/fundedItem sg:pub.10.1007/s12149-017-1208-x
158 rdf:type schema:MonetaryGrant
159 sg:journal.1099601 schema:issn 0914-7187
160 1864-6433
161 schema:name Annals of Nuclear Medicine
162 rdf:type schema:Periodical
163 sg:person.01107172053.23 schema:affiliation https://www.grid.ac/institutes/grid.163577.1
164 schema:familyName Yamamoto
165 schema:givenName Makoto
166 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01107172053.23
167 rdf:type schema:Person
168 sg:person.01237563020.08 schema:affiliation https://www.grid.ac/institutes/grid.163577.1
169 schema:familyName Tsujikawa
170 schema:givenName Tetsuya
171 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01237563020.08
172 rdf:type schema:Person
173 sg:person.01274434200.13 schema:affiliation https://www.grid.ac/institutes/grid.163577.1
174 schema:familyName Tsuyoshi
175 schema:givenName Hideaki
176 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01274434200.13
177 rdf:type schema:Person
178 sg:person.01307237040.21 schema:affiliation https://www.grid.ac/institutes/grid.163577.1
179 schema:familyName Kiyono
180 schema:givenName Yasushi
181 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01307237040.21
182 rdf:type schema:Person
183 sg:person.0623355330.58 schema:affiliation https://www.grid.ac/institutes/grid.163577.1
184 schema:familyName Okazawa
185 schema:givenName Hidehiko
186 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0623355330.58
187 rdf:type schema:Person
188 sg:person.0624744733.44 schema:affiliation https://www.grid.ac/institutes/grid.163577.1
189 schema:familyName Yamada
190 schema:givenName Shizuka
191 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0624744733.44
192 rdf:type schema:Person
193 sg:person.0742252642.08 schema:affiliation https://www.grid.ac/institutes/grid.163577.1
194 schema:familyName Yoshida
195 schema:givenName Yoshio
196 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0742252642.08
197 rdf:type schema:Person
198 sg:person.0766501102.93 schema:affiliation https://www.grid.ac/institutes/grid.163577.1
199 schema:familyName Kimura
200 schema:givenName Hirohiko
201 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0766501102.93
202 rdf:type schema:Person
203 sg:pub.10.1007/s00259-011-1787-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1011044851
204 https://doi.org/10.1007/s00259-011-1787-z
205 rdf:type schema:CreativeWork
206 sg:pub.10.1007/s00259-012-2247-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051316850
207 https://doi.org/10.1007/s00259-012-2247-0
208 rdf:type schema:CreativeWork
209 sg:pub.10.1007/s00259-012-2332-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004417333
210 https://doi.org/10.1007/s00259-012-2332-4
211 rdf:type schema:CreativeWork
212 sg:pub.10.1007/s00259-016-3427-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050524814
213 https://doi.org/10.1007/s00259-016-3427-0
214 rdf:type schema:CreativeWork
215 sg:pub.10.1007/s00330-009-1471-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1051719875
216 https://doi.org/10.1007/s00330-009-1471-x
217 rdf:type schema:CreativeWork
218 sg:pub.10.1007/s12149-014-0895-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022490401
219 https://doi.org/10.1007/s12149-014-0895-9
220 rdf:type schema:CreativeWork
221 sg:pub.10.1038/ncomms5006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009469125
222 https://doi.org/10.1038/ncomms5006
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1002/jmri.24998 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010842043
225 rdf:type schema:CreativeWork
226 https://doi.org/10.1016/j.ajog.2013.12.028 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046466206
227 rdf:type schema:CreativeWork
228 https://doi.org/10.1016/j.bpobgyn.2011.06.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030723290
229 rdf:type schema:CreativeWork
230 https://doi.org/10.1016/j.ijrobp.2005.02.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016212813
231 rdf:type schema:CreativeWork
232 https://doi.org/10.1016/j.patcog.2008.08.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005816861
233 rdf:type schema:CreativeWork
234 https://doi.org/10.1016/j.ygyno.2009.09.023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044079369
235 rdf:type schema:CreativeWork
236 https://doi.org/10.1056/nejmoa1113205 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031166230
237 rdf:type schema:CreativeWork
238 https://doi.org/10.1148/radiol.2015141309 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002276302
239 rdf:type schema:CreativeWork
240 https://doi.org/10.2214/ajr.09.4074 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069300696
241 rdf:type schema:CreativeWork
242 https://doi.org/10.2307/2531595 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069977037
243 rdf:type schema:CreativeWork
244 https://doi.org/10.2967/jnumed.107.047142 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052587843
245 rdf:type schema:CreativeWork
246 https://doi.org/10.2967/jnumed.110.082404 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040174324
247 rdf:type schema:CreativeWork
248 https://doi.org/10.2967/jnumed.112.119289 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031040098
249 rdf:type schema:CreativeWork
250 https://doi.org/10.2967/jnumed.116.173708 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070928497
251 rdf:type schema:CreativeWork
252 https://doi.org/10.2967/jnumed.116.181859 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070928645
253 rdf:type schema:CreativeWork
254 https://doi.org/10.3892/or_00000734 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071537518
255 rdf:type schema:CreativeWork
256 https://www.grid.ac/institutes/grid.163577.1 schema:alternateName University of Fukui
257 schema:name Biomedical Imaging Research Center, University of Fukui, 23-3 Matsuoka-Shimoaizuki, Eiheiji-cho, 910-1193, Fukui, Japan
258 Department of Obstetrics and Gynecology, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
259 Department of Radiology, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
260 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...