18F-FDG PET radiomics approaches: comparing and clustering features in cervical cancer View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2017-11

AUTHORS

Tetsuya Tsujikawa, Tasmiah Rahman, Makoto Yamamoto, Shizuka Yamada, Hideaki Tsuyoshi, Yasushi Kiyono, Hirohiko Kimura, Yoshio Yoshida, Hidehiko Okazawa

ABSTRACT

OBJECTIVES: The aims of our study were to find the textural features on 18F-FDG PET/CT which reflect the different histological architectures between cervical cancer subtypes and to make a visual assessment of the association between 18F-FDG PET textural features in cervical cancer. METHODS: Eighty-three cervical cancer patients [62 squamous cell carcinomas (SCCs) and 21 non-SCCs (NSCCs)] who had undergone pretreatment 18F-FDG PET/CT were enrolled. A texture analysis was performed on PET/CT images, from which 18 PET radiomics features were extracted including first-order features such as standardized uptake value (SUV), metabolic tumor volume (MTV) and total lesion glycolysis (TLG), second- and high-order textural features using SUV histogram, normalized gray-level co-occurrence matrix (NGLCM), and neighborhood gray-tone difference matrix, respectively. These features were compared between SCC and NSCC using a Bonferroni adjusted P value threshold of 0.0028 (0.05/18). To assess the association between PET features, a heat map analysis with hierarchical clustering, one of the radiomics approaches, was performed. RESULTS: Among 18 PET features, correlation, a second-order textural feature derived from NGLCM, was a stable parameter and it was the only feature which showed a robust trend toward significant difference between SCC and NSCC. Cervical SCC showed a higher correlation (0.70 ± 0.07) than NSCC (0.64 ± 0.07, P = 0.0030). The other PET features did not show any significant differences between SCC and NSCC. A higher correlation in SCC might reflect higher structural integrity and stronger spatial/linear relationship of cancer cells compared with NSCC. A heat map with a PET feature dendrogram clearly showed 5 distinct clusters, where correlation belonged to a cluster including MTV and TLG. However, the association between correlation and MTV/TLG was not strong. Correlation was a relatively independent PET feature in cervical cancer. CONCLUSIONS: 18F-FDG PET textural features might reflect the differences in histological architecture between cervical cancer subtypes. PET radiomics approaches reveal the association between PET features and will be useful for finding a single feature or a combination of features leading to precise diagnoses, potential prognostic models, and effective therapeutic strategies. More... »

PAGES

678-685

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s12149-017-1199-7

DOI

http://dx.doi.org/10.1007/s12149-017-1199-7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1091220083

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/28815452


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1112", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Oncology and Carcinogenesis", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Carcinoma, Squamous Cell", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cluster Analysis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Fluorodeoxyglucose F18", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Image Processing, Computer-Assisted", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Medical Informatics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Positron Emission Tomography Computed Tomography", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Retrospective Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Uterine Cervical Neoplasms", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Fukui", 
          "id": "https://www.grid.ac/institutes/grid.163577.1", 
          "name": [
            "Biomedical Imaging Research Center, University of Fukui, 23-3 Matsuoka-Shimoaizuki, Eiheiji-cho, 910-1193, Fukui, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tsujikawa", 
        "givenName": "Tetsuya", 
        "id": "sg:person.01237563020.08", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01237563020.08"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Fukui", 
          "id": "https://www.grid.ac/institutes/grid.163577.1", 
          "name": [
            "Biomedical Imaging Research Center, University of Fukui, 23-3 Matsuoka-Shimoaizuki, Eiheiji-cho, 910-1193, Fukui, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rahman", 
        "givenName": "Tasmiah", 
        "id": "sg:person.01126207677.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01126207677.43"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Fukui", 
          "id": "https://www.grid.ac/institutes/grid.163577.1", 
          "name": [
            "Department of Obstetrics and Gynecology, Faculty of Medical Sciences, University of Fukui, Fukui, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yamamoto", 
        "givenName": "Makoto", 
        "id": "sg:person.01107172053.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01107172053.23"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Fukui", 
          "id": "https://www.grid.ac/institutes/grid.163577.1", 
          "name": [
            "Department of Obstetrics and Gynecology, Faculty of Medical Sciences, University of Fukui, Fukui, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yamada", 
        "givenName": "Shizuka", 
        "id": "sg:person.0624744733.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0624744733.44"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Fukui", 
          "id": "https://www.grid.ac/institutes/grid.163577.1", 
          "name": [
            "Department of Obstetrics and Gynecology, Faculty of Medical Sciences, University of Fukui, Fukui, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tsuyoshi", 
        "givenName": "Hideaki", 
        "id": "sg:person.01274434200.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01274434200.13"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Fukui", 
          "id": "https://www.grid.ac/institutes/grid.163577.1", 
          "name": [
            "Biomedical Imaging Research Center, University of Fukui, 23-3 Matsuoka-Shimoaizuki, Eiheiji-cho, 910-1193, Fukui, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kiyono", 
        "givenName": "Yasushi", 
        "id": "sg:person.01307237040.21", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01307237040.21"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Fukui", 
          "id": "https://www.grid.ac/institutes/grid.163577.1", 
          "name": [
            "Department of Radiology, Faculty of Medical Sciences, University of Fukui, Fukui, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kimura", 
        "givenName": "Hirohiko", 
        "id": "sg:person.0766501102.93", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0766501102.93"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Fukui", 
          "id": "https://www.grid.ac/institutes/grid.163577.1", 
          "name": [
            "Department of Obstetrics and Gynecology, Faculty of Medical Sciences, University of Fukui, Fukui, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yoshida", 
        "givenName": "Yoshio", 
        "id": "sg:person.0742252642.08", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0742252642.08"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Fukui", 
          "id": "https://www.grid.ac/institutes/grid.163577.1", 
          "name": [
            "Biomedical Imaging Research Center, University of Fukui, 23-3 Matsuoka-Shimoaizuki, Eiheiji-cho, 910-1193, Fukui, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Okazawa", 
        "givenName": "Hidehiko", 
        "id": "sg:person.0623355330.58", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0623355330.58"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.ygyno.2012.01.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004480205"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.patcog.2008.08.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005816861"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2967/jnumed.114.144055", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007967674"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms5006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009469125", 
          "https://doi.org/10.1038/ncomms5006"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11912-014-0416-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013576873", 
          "https://doi.org/10.1007/s11912-014-0416-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/igc.0b013e318260a905", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015379966"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/igc.0b013e318260a905", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015379966"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/igc.0b013e318260a905", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015379966"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ygyno.2009.06.022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018023337"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00259-010-1413-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018646696", 
          "https://doi.org/10.1007/s00259-010-1413-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00259-010-1413-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018646696", 
          "https://doi.org/10.1007/s00259-010-1413-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/md.0000000000003017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020705732"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/md.0000000000003017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020705732"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/md.0000000000003017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020705732"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.2015151169", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023809829"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2967/jnumed.112.119289", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031040098"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00259-009-1336-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032428701", 
          "https://doi.org/10.1007/s00259-009-1336-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00259-009-1336-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032428701", 
          "https://doi.org/10.1007/s00259-009-1336-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s13244-012-0196-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036528660", 
          "https://doi.org/10.1007/s13244-012-0196-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ygyno.2012.06.027", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038038843"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5589/m02-004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038581040"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1155/2014/248505", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039286999"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s13139-013-0260-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046932155", 
          "https://doi.org/10.1007/s13139-013-0260-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.mibio.2003.12.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047238597"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0145063", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047540412"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0145063", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047540412"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ygyno.2010.11.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048634508"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00259-016-3427-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050524814", 
          "https://doi.org/10.1007/s00259-016-3427-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00259-016-3427-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050524814", 
          "https://doi.org/10.1007/s00259-016-3427-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00259-012-2247-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051316850", 
          "https://doi.org/10.1007/s00259-012-2247-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/21.44046", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061122207"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tsmc.1973.4309314", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061792707"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2967/jnumed.116.173708", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070928497"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2967/jnumed.116.181859", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070928645"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1074490706", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-11", 
    "datePublishedReg": "2017-11-01", 
    "description": "OBJECTIVES: The aims of our study were to find the textural features on 18F-FDG PET/CT which reflect the different histological architectures between cervical cancer subtypes and to make a visual assessment of the association between 18F-FDG PET textural features in cervical cancer.\nMETHODS: Eighty-three cervical cancer patients [62 squamous cell carcinomas (SCCs) and 21 non-SCCs (NSCCs)] who had undergone pretreatment 18F-FDG PET/CT were enrolled. A texture analysis was performed on PET/CT images, from which 18 PET radiomics features were extracted including first-order features such as standardized uptake value (SUV), metabolic tumor volume (MTV) and total lesion glycolysis (TLG), second- and high-order textural features using SUV histogram, normalized gray-level co-occurrence matrix (NGLCM), and neighborhood gray-tone difference matrix, respectively. These features were compared between SCC and NSCC using a Bonferroni adjusted P value threshold of 0.0028 (0.05/18). To assess the association between PET features, a heat map analysis with hierarchical clustering, one of the radiomics approaches, was performed.\nRESULTS: Among 18 PET features, correlation, a second-order textural feature derived from NGLCM, was a stable parameter and it was the only feature which showed a robust trend toward significant difference between SCC and NSCC. Cervical SCC showed a higher correlation (0.70\u00a0\u00b1\u00a00.07) than NSCC (0.64\u00a0\u00b1\u00a00.07, P\u00a0=\u00a00.0030). The other PET features did not show any significant differences between SCC and NSCC. A higher correlation in SCC might reflect higher structural integrity and stronger spatial/linear relationship of cancer cells compared with NSCC. A heat map with a PET feature dendrogram clearly showed 5 distinct clusters, where correlation belonged to a cluster including MTV and TLG. However, the association between correlation and MTV/TLG was not strong. Correlation was a relatively independent PET feature in cervical cancer.\nCONCLUSIONS: 18F-FDG PET textural features might reflect the differences in histological architecture between cervical cancer subtypes. PET radiomics approaches reveal the association between PET features and will be useful for finding a single feature or a combination of features leading to precise diagnoses, potential prognostic models, and effective therapeutic strategies.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s12149-017-1199-7", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.5925190", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.5935661", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.5862654", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1099601", 
        "issn": [
          "0914-7187", 
          "1864-6433"
        ], 
        "name": "Annals of Nuclear Medicine", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "9", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "31"
      }
    ], 
    "name": "18F-FDG PET radiomics approaches: comparing and clustering features in cervical cancer", 
    "pagination": "678-685", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "11d78752bfc4411bc34d11358b11ecb0cbe48b8e315111b4581a674793082fb6"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "28815452"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "8913398"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s12149-017-1199-7"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1091220083"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s12149-017-1199-7", 
      "https://app.dimensions.ai/details/publication/pub.1091220083"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T09:34", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000346_0000000346/records_99815_00000004.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs12149-017-1199-7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12149-017-1199-7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12149-017-1199-7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12149-017-1199-7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12149-017-1199-7'


 

This table displays all metadata directly associated to this object as RDF triples.

265 TRIPLES      21 PREDICATES      67 URIs      32 LITERALS      20 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s12149-017-1199-7 schema:about N1aaec8a7ad334ded827cdd74693db466
2 N375570996de7486bbc55f08de9d04077
3 N48b4ba8f667249ee9010cbd5d9d11c11
4 N4f07940cb1294d7ab788fba29c9bf6c6
5 N566007285750414cb9cf2c0fa0dcaf56
6 N6b3cc3dd25b44e689360cd882e0db91f
7 N6cd2c360a19b42f39431f42050541c33
8 N714aeb39d0dd41ba994e57fa7fc59b74
9 N943cfc2cedfe424a9433e99b73c314b0
10 Na177122169984947b6bf74f913813241
11 Nbb9a21b95bb546fe8bce98eed2d381af
12 anzsrc-for:11
13 anzsrc-for:1112
14 schema:author N04cfc26a12df4961a4a3c014b67b3630
15 schema:citation sg:pub.10.1007/s00259-009-1336-1
16 sg:pub.10.1007/s00259-010-1413-5
17 sg:pub.10.1007/s00259-012-2247-0
18 sg:pub.10.1007/s00259-016-3427-0
19 sg:pub.10.1007/s11912-014-0416-y
20 sg:pub.10.1007/s13139-013-0260-2
21 sg:pub.10.1007/s13244-012-0196-6
22 sg:pub.10.1038/ncomms5006
23 https://app.dimensions.ai/details/publication/pub.1074490706
24 https://doi.org/10.1016/j.mibio.2003.12.004
25 https://doi.org/10.1016/j.patcog.2008.08.011
26 https://doi.org/10.1016/j.ygyno.2009.06.022
27 https://doi.org/10.1016/j.ygyno.2010.11.002
28 https://doi.org/10.1016/j.ygyno.2012.01.012
29 https://doi.org/10.1016/j.ygyno.2012.06.027
30 https://doi.org/10.1097/igc.0b013e318260a905
31 https://doi.org/10.1097/md.0000000000003017
32 https://doi.org/10.1109/21.44046
33 https://doi.org/10.1109/tsmc.1973.4309314
34 https://doi.org/10.1148/radiol.2015151169
35 https://doi.org/10.1155/2014/248505
36 https://doi.org/10.1371/journal.pone.0145063
37 https://doi.org/10.2967/jnumed.112.119289
38 https://doi.org/10.2967/jnumed.114.144055
39 https://doi.org/10.2967/jnumed.116.173708
40 https://doi.org/10.2967/jnumed.116.181859
41 https://doi.org/10.5589/m02-004
42 schema:datePublished 2017-11
43 schema:datePublishedReg 2017-11-01
44 schema:description OBJECTIVES: The aims of our study were to find the textural features on 18F-FDG PET/CT which reflect the different histological architectures between cervical cancer subtypes and to make a visual assessment of the association between 18F-FDG PET textural features in cervical cancer. METHODS: Eighty-three cervical cancer patients [62 squamous cell carcinomas (SCCs) and 21 non-SCCs (NSCCs)] who had undergone pretreatment 18F-FDG PET/CT were enrolled. A texture analysis was performed on PET/CT images, from which 18 PET radiomics features were extracted including first-order features such as standardized uptake value (SUV), metabolic tumor volume (MTV) and total lesion glycolysis (TLG), second- and high-order textural features using SUV histogram, normalized gray-level co-occurrence matrix (NGLCM), and neighborhood gray-tone difference matrix, respectively. These features were compared between SCC and NSCC using a Bonferroni adjusted P value threshold of 0.0028 (0.05/18). To assess the association between PET features, a heat map analysis with hierarchical clustering, one of the radiomics approaches, was performed. RESULTS: Among 18 PET features, correlation, a second-order textural feature derived from NGLCM, was a stable parameter and it was the only feature which showed a robust trend toward significant difference between SCC and NSCC. Cervical SCC showed a higher correlation (0.70 ± 0.07) than NSCC (0.64 ± 0.07, P = 0.0030). The other PET features did not show any significant differences between SCC and NSCC. A higher correlation in SCC might reflect higher structural integrity and stronger spatial/linear relationship of cancer cells compared with NSCC. A heat map with a PET feature dendrogram clearly showed 5 distinct clusters, where correlation belonged to a cluster including MTV and TLG. However, the association between correlation and MTV/TLG was not strong. Correlation was a relatively independent PET feature in cervical cancer. CONCLUSIONS: 18F-FDG PET textural features might reflect the differences in histological architecture between cervical cancer subtypes. PET radiomics approaches reveal the association between PET features and will be useful for finding a single feature or a combination of features leading to precise diagnoses, potential prognostic models, and effective therapeutic strategies.
45 schema:genre research_article
46 schema:inLanguage en
47 schema:isAccessibleForFree false
48 schema:isPartOf Ncff6ad96f6d946c98fdd0fd169d2f9f3
49 Nd540662c20b24264aa8cca84bc3ca71b
50 sg:journal.1099601
51 schema:name 18F-FDG PET radiomics approaches: comparing and clustering features in cervical cancer
52 schema:pagination 678-685
53 schema:productId N0e9e378ec48040c58be64a868e39806d
54 N1e58ef71dffa4a1fa38d9bb5d90a2883
55 N29b9f1a17b5f4b91b22e1a7e1a70de1c
56 N2eaa35ea40064bd4b455a4bb08d8a6cd
57 N7819dc7fac8f416ea0d2067979544c9a
58 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091220083
59 https://doi.org/10.1007/s12149-017-1199-7
60 schema:sdDatePublished 2019-04-11T09:34
61 schema:sdLicense https://scigraph.springernature.com/explorer/license/
62 schema:sdPublisher N7d3902dd7eaf444795ae3f96926ea7be
63 schema:url https://link.springer.com/10.1007%2Fs12149-017-1199-7
64 sgo:license sg:explorer/license/
65 sgo:sdDataset articles
66 rdf:type schema:ScholarlyArticle
67 N04cfc26a12df4961a4a3c014b67b3630 rdf:first sg:person.01237563020.08
68 rdf:rest N3f613e3ea358425f81450fd74751d1e8
69 N0e9e378ec48040c58be64a868e39806d schema:name nlm_unique_id
70 schema:value 8913398
71 rdf:type schema:PropertyValue
72 N18108c4de9b64a52ae7f2e44770d9e7d rdf:first sg:person.0742252642.08
73 rdf:rest Na8f343f6beb94523b3e80c45aef359c0
74 N1aaec8a7ad334ded827cdd74693db466 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
75 schema:name Positron Emission Tomography Computed Tomography
76 rdf:type schema:DefinedTerm
77 N1e58ef71dffa4a1fa38d9bb5d90a2883 schema:name doi
78 schema:value 10.1007/s12149-017-1199-7
79 rdf:type schema:PropertyValue
80 N29b9f1a17b5f4b91b22e1a7e1a70de1c schema:name pubmed_id
81 schema:value 28815452
82 rdf:type schema:PropertyValue
83 N2be0be6daa864ed6a78c07b8f689c203 rdf:first sg:person.01107172053.23
84 rdf:rest Ncb421a27bea2434e810265a8ff2df6e4
85 N2eaa35ea40064bd4b455a4bb08d8a6cd schema:name readcube_id
86 schema:value 11d78752bfc4411bc34d11358b11ecb0cbe48b8e315111b4581a674793082fb6
87 rdf:type schema:PropertyValue
88 N375570996de7486bbc55f08de9d04077 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
89 schema:name Image Processing, Computer-Assisted
90 rdf:type schema:DefinedTerm
91 N3f613e3ea358425f81450fd74751d1e8 rdf:first sg:person.01126207677.43
92 rdf:rest N2be0be6daa864ed6a78c07b8f689c203
93 N48b4ba8f667249ee9010cbd5d9d11c11 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
94 schema:name Retrospective Studies
95 rdf:type schema:DefinedTerm
96 N4e68fff1e3044bfaaa461b12be9dafd2 rdf:first sg:person.01274434200.13
97 rdf:rest Nd30c001e1b3a4c59873fffbd422151f6
98 N4f07940cb1294d7ab788fba29c9bf6c6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
99 schema:name Humans
100 rdf:type schema:DefinedTerm
101 N566007285750414cb9cf2c0fa0dcaf56 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
102 schema:name Middle Aged
103 rdf:type schema:DefinedTerm
104 N6b3cc3dd25b44e689360cd882e0db91f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
105 schema:name Fluorodeoxyglucose F18
106 rdf:type schema:DefinedTerm
107 N6cd2c360a19b42f39431f42050541c33 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
108 schema:name Female
109 rdf:type schema:DefinedTerm
110 N714aeb39d0dd41ba994e57fa7fc59b74 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
111 schema:name Cluster Analysis
112 rdf:type schema:DefinedTerm
113 N7819dc7fac8f416ea0d2067979544c9a schema:name dimensions_id
114 schema:value pub.1091220083
115 rdf:type schema:PropertyValue
116 N7d3902dd7eaf444795ae3f96926ea7be schema:name Springer Nature - SN SciGraph project
117 rdf:type schema:Organization
118 N943cfc2cedfe424a9433e99b73c314b0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
119 schema:name Medical Informatics
120 rdf:type schema:DefinedTerm
121 Na177122169984947b6bf74f913813241 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
122 schema:name Uterine Cervical Neoplasms
123 rdf:type schema:DefinedTerm
124 Na8f343f6beb94523b3e80c45aef359c0 rdf:first sg:person.0623355330.58
125 rdf:rest rdf:nil
126 Nbb9a21b95bb546fe8bce98eed2d381af schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
127 schema:name Carcinoma, Squamous Cell
128 rdf:type schema:DefinedTerm
129 Nc217a0b8e1f946eaa17963342f5d7c51 rdf:first sg:person.0766501102.93
130 rdf:rest N18108c4de9b64a52ae7f2e44770d9e7d
131 Ncb421a27bea2434e810265a8ff2df6e4 rdf:first sg:person.0624744733.44
132 rdf:rest N4e68fff1e3044bfaaa461b12be9dafd2
133 Ncff6ad96f6d946c98fdd0fd169d2f9f3 schema:issueNumber 9
134 rdf:type schema:PublicationIssue
135 Nd30c001e1b3a4c59873fffbd422151f6 rdf:first sg:person.01307237040.21
136 rdf:rest Nc217a0b8e1f946eaa17963342f5d7c51
137 Nd540662c20b24264aa8cca84bc3ca71b schema:volumeNumber 31
138 rdf:type schema:PublicationVolume
139 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
140 schema:name Medical and Health Sciences
141 rdf:type schema:DefinedTerm
142 anzsrc-for:1112 schema:inDefinedTermSet anzsrc-for:
143 schema:name Oncology and Carcinogenesis
144 rdf:type schema:DefinedTerm
145 sg:grant.5862654 http://pending.schema.org/fundedItem sg:pub.10.1007/s12149-017-1199-7
146 rdf:type schema:MonetaryGrant
147 sg:grant.5925190 http://pending.schema.org/fundedItem sg:pub.10.1007/s12149-017-1199-7
148 rdf:type schema:MonetaryGrant
149 sg:grant.5935661 http://pending.schema.org/fundedItem sg:pub.10.1007/s12149-017-1199-7
150 rdf:type schema:MonetaryGrant
151 sg:journal.1099601 schema:issn 0914-7187
152 1864-6433
153 schema:name Annals of Nuclear Medicine
154 rdf:type schema:Periodical
155 sg:person.01107172053.23 schema:affiliation https://www.grid.ac/institutes/grid.163577.1
156 schema:familyName Yamamoto
157 schema:givenName Makoto
158 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01107172053.23
159 rdf:type schema:Person
160 sg:person.01126207677.43 schema:affiliation https://www.grid.ac/institutes/grid.163577.1
161 schema:familyName Rahman
162 schema:givenName Tasmiah
163 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01126207677.43
164 rdf:type schema:Person
165 sg:person.01237563020.08 schema:affiliation https://www.grid.ac/institutes/grid.163577.1
166 schema:familyName Tsujikawa
167 schema:givenName Tetsuya
168 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01237563020.08
169 rdf:type schema:Person
170 sg:person.01274434200.13 schema:affiliation https://www.grid.ac/institutes/grid.163577.1
171 schema:familyName Tsuyoshi
172 schema:givenName Hideaki
173 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01274434200.13
174 rdf:type schema:Person
175 sg:person.01307237040.21 schema:affiliation https://www.grid.ac/institutes/grid.163577.1
176 schema:familyName Kiyono
177 schema:givenName Yasushi
178 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01307237040.21
179 rdf:type schema:Person
180 sg:person.0623355330.58 schema:affiliation https://www.grid.ac/institutes/grid.163577.1
181 schema:familyName Okazawa
182 schema:givenName Hidehiko
183 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0623355330.58
184 rdf:type schema:Person
185 sg:person.0624744733.44 schema:affiliation https://www.grid.ac/institutes/grid.163577.1
186 schema:familyName Yamada
187 schema:givenName Shizuka
188 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0624744733.44
189 rdf:type schema:Person
190 sg:person.0742252642.08 schema:affiliation https://www.grid.ac/institutes/grid.163577.1
191 schema:familyName Yoshida
192 schema:givenName Yoshio
193 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0742252642.08
194 rdf:type schema:Person
195 sg:person.0766501102.93 schema:affiliation https://www.grid.ac/institutes/grid.163577.1
196 schema:familyName Kimura
197 schema:givenName Hirohiko
198 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0766501102.93
199 rdf:type schema:Person
200 sg:pub.10.1007/s00259-009-1336-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032428701
201 https://doi.org/10.1007/s00259-009-1336-1
202 rdf:type schema:CreativeWork
203 sg:pub.10.1007/s00259-010-1413-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018646696
204 https://doi.org/10.1007/s00259-010-1413-5
205 rdf:type schema:CreativeWork
206 sg:pub.10.1007/s00259-012-2247-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051316850
207 https://doi.org/10.1007/s00259-012-2247-0
208 rdf:type schema:CreativeWork
209 sg:pub.10.1007/s00259-016-3427-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050524814
210 https://doi.org/10.1007/s00259-016-3427-0
211 rdf:type schema:CreativeWork
212 sg:pub.10.1007/s11912-014-0416-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1013576873
213 https://doi.org/10.1007/s11912-014-0416-y
214 rdf:type schema:CreativeWork
215 sg:pub.10.1007/s13139-013-0260-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046932155
216 https://doi.org/10.1007/s13139-013-0260-2
217 rdf:type schema:CreativeWork
218 sg:pub.10.1007/s13244-012-0196-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036528660
219 https://doi.org/10.1007/s13244-012-0196-6
220 rdf:type schema:CreativeWork
221 sg:pub.10.1038/ncomms5006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009469125
222 https://doi.org/10.1038/ncomms5006
223 rdf:type schema:CreativeWork
224 https://app.dimensions.ai/details/publication/pub.1074490706 schema:CreativeWork
225 https://doi.org/10.1016/j.mibio.2003.12.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047238597
226 rdf:type schema:CreativeWork
227 https://doi.org/10.1016/j.patcog.2008.08.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005816861
228 rdf:type schema:CreativeWork
229 https://doi.org/10.1016/j.ygyno.2009.06.022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018023337
230 rdf:type schema:CreativeWork
231 https://doi.org/10.1016/j.ygyno.2010.11.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048634508
232 rdf:type schema:CreativeWork
233 https://doi.org/10.1016/j.ygyno.2012.01.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004480205
234 rdf:type schema:CreativeWork
235 https://doi.org/10.1016/j.ygyno.2012.06.027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038038843
236 rdf:type schema:CreativeWork
237 https://doi.org/10.1097/igc.0b013e318260a905 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015379966
238 rdf:type schema:CreativeWork
239 https://doi.org/10.1097/md.0000000000003017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020705732
240 rdf:type schema:CreativeWork
241 https://doi.org/10.1109/21.44046 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061122207
242 rdf:type schema:CreativeWork
243 https://doi.org/10.1109/tsmc.1973.4309314 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061792707
244 rdf:type schema:CreativeWork
245 https://doi.org/10.1148/radiol.2015151169 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023809829
246 rdf:type schema:CreativeWork
247 https://doi.org/10.1155/2014/248505 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039286999
248 rdf:type schema:CreativeWork
249 https://doi.org/10.1371/journal.pone.0145063 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047540412
250 rdf:type schema:CreativeWork
251 https://doi.org/10.2967/jnumed.112.119289 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031040098
252 rdf:type schema:CreativeWork
253 https://doi.org/10.2967/jnumed.114.144055 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007967674
254 rdf:type schema:CreativeWork
255 https://doi.org/10.2967/jnumed.116.173708 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070928497
256 rdf:type schema:CreativeWork
257 https://doi.org/10.2967/jnumed.116.181859 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070928645
258 rdf:type schema:CreativeWork
259 https://doi.org/10.5589/m02-004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038581040
260 rdf:type schema:CreativeWork
261 https://www.grid.ac/institutes/grid.163577.1 schema:alternateName University of Fukui
262 schema:name Biomedical Imaging Research Center, University of Fukui, 23-3 Matsuoka-Shimoaizuki, Eiheiji-cho, 910-1193, Fukui, Japan
263 Department of Obstetrics and Gynecology, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
264 Department of Radiology, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
265 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...