Application of the newly developed Japanese adenosine normal database for adenosine stress myocardial scintigraphy View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2015-10

AUTHORS

Shingo Harata, Satoshi Isobe, Itsuro Morishima, Susumu Suzuki, Hideyuki Tsuboi, Takahito Sone, Hideki Ishii, Toyoaki Murohara

ABSTRACT

OBJECTIVES: The currently available Japanese normal database (NDB) in stress myocardial perfusion scintigraphy recommended by the Japanese Society of Nuclear Medicine (JSNM-NDB) is created based on the data from exercise tests. The newly developed adenosine normal database (ADS-NDB) remains to be validated for patients undergoing adenosine stress test. We tested whether the diagnostic accuracy of adenosine stress test is improved by the use of ADS-NDB (Kanazawa University). METHODS: Of 233 consecutive patients undergoing (99m)Tc-MIBI adenosine stress test, 112 patients were tested. The stress/rest myocardial (99m)Tc-MIBI single-photon emission computed tomography (SPECT) images were analyzed by AutoQUANT 7.2 with both ADS-NDB and JSNM-NDB. The summed stress score (SSS) and summed difference score (SDS) were calculated. The agreements of the post-stress defect severity between ADS-NDB and JSNM-NDB were assessed using a weighted kappa statistic. RESULTS: In all patients, mean SSSs of all, right coronary artery (RCA), left anterior descending (LAD), and left circumflex (LCx) territories were significantly lower with ADS-NDB than those with JSNM-NDB. Mean SDSs in all, RCA, and LAD territories were significantly lower with ADS-NDB than those with JSNM-NDB. In 28 patients with significant coronary stenosis, the mean SSS in the RCA territory was significantly lower with ADS-NDB than that with JSNM-NDB. In 84 patients without ischemia, both mean SSSs and SDSs in all, RCA, LAD, and LCx territories were significantly lower with ADS-NDB than those with JSNM-NDB. Weighted kappa values of all patients, patients with significant stenosis, and patients without ischemia were 0.89, 0.83, and 0.92, respectively. CONCLUSIONS: Differences were observed between results from ADS-NDB and JSNM-NDB. The diagnostic accuracy of adenosine stress myocardial perfusion scintigraphy may be improved by reducing false-positive results. More... »

PAGES

730-739

References to SciGraph publications

  • 2007-07. The increasing role of quantification in clinical nuclear cardiology: The Emory approach in JOURNAL OF NUCLEAR CARDIOLOGY
  • 2007-07. Quantitation in gated perfusion SPECT imaging: The Cedars-Sinai approach in JOURNAL OF NUCLEAR CARDIOLOGY
  • 1991-03. Upward creep of the heart in exercise thallium 201 single photon emission tomography: clinical relevance and a simple correction method in EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING
  • 2004-07. Prognostic validation of a 17-segment score derived from a 20-segment score for myocardial perfusion spect interpretation in JOURNAL OF NUCLEAR CARDIOLOGY
  • 2009-06. The importance of population-specific normal database for quantification of myocardial ischemia: comparison between Japanese 360 and 180-degree databases and a US database in JOURNAL OF NUCLEAR CARDIOLOGY
  • 2007-07. Corridor4DM: The Michigan method for quantitative nuclear cardiology in JOURNAL OF NUCLEAR CARDIOLOGY
  • 2007-11. Creation and characterization of Japanese standards for myocardial perfusion SPECT: database from the Japanese Society of Nuclear Medicine Working Group in ANNALS OF NUCLEAR MEDICINE
  • 2008-02. Prognostic study of risk stratification among Japanese patients with ischemic heart disease using gated myocardial perfusion SPECT: J-ACCESS study in EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING
  • 2008-02. Comparison of SSS and SRS calculated from normal databases provided by QPS and 4D-MSPECT manufacturers and from identical institutional normals in EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING
  • 1996-11. Comparison of pharmacologic stress agents in JOURNAL OF NUCLEAR CARDIOLOGY
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s12149-015-0995-1

    DOI

    http://dx.doi.org/10.1007/s12149-015-0995-1

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1044623653

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/26134216


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1102", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Cardiorespiratory Medicine and Haematology", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Medical and Health Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Adenosine", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Aged", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Coronary Artery Disease", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Databases, Factual", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Female", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Heart", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Male", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Myocardial Perfusion Imaging", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Sensitivity and Specificity", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Stress, Physiological", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Technetium Tc 99m Sestamibi", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Tomography, Emission-Computed, Single-Photon", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Nagoya University", 
              "id": "https://www.grid.ac/institutes/grid.27476.30", 
              "name": [
                "Department of Cardiology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, 466-8550, Nagoya, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Harata", 
            "givenName": "Shingo", 
            "id": "sg:person.0664722634.68", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0664722634.68"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Nagoya University", 
              "id": "https://www.grid.ac/institutes/grid.27476.30", 
              "name": [
                "Department of Cardiology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, 466-8550, Nagoya, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Isobe", 
            "givenName": "Satoshi", 
            "id": "sg:person.0621502257.09", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0621502257.09"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Ogaki Municipal Hospital", 
              "id": "https://www.grid.ac/institutes/grid.416762.0", 
              "name": [
                "Department of Cardiology, Ogaki Municipal Hospital, Ogaki, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Morishima", 
            "givenName": "Itsuro", 
            "id": "sg:person.01237420520.15", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01237420520.15"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Nagoya University", 
              "id": "https://www.grid.ac/institutes/grid.27476.30", 
              "name": [
                "Department of Cardiology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, 466-8550, Nagoya, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Suzuki", 
            "givenName": "Susumu", 
            "id": "sg:person.01127770740.37", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01127770740.37"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Ogaki Municipal Hospital", 
              "id": "https://www.grid.ac/institutes/grid.416762.0", 
              "name": [
                "Department of Cardiology, Ogaki Municipal Hospital, Ogaki, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Tsuboi", 
            "givenName": "Hideyuki", 
            "id": "sg:person.0661553140.19", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0661553140.19"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Ogaki Municipal Hospital", 
              "id": "https://www.grid.ac/institutes/grid.416762.0", 
              "name": [
                "Department of Cardiology, Ogaki Municipal Hospital, Ogaki, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Sone", 
            "givenName": "Takahito", 
            "id": "sg:person.01306246266.36", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01306246266.36"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Nagoya University", 
              "id": "https://www.grid.ac/institutes/grid.27476.30", 
              "name": [
                "Department of Cardiology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, 466-8550, Nagoya, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ishii", 
            "givenName": "Hideki", 
            "id": "sg:person.01202600702.34", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01202600702.34"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Nagoya University", 
              "id": "https://www.grid.ac/institutes/grid.27476.30", 
              "name": [
                "Department of Cardiology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, 466-8550, Nagoya, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Murohara", 
            "givenName": "Toyoaki", 
            "id": "sg:person.01166405657.56", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01166405657.56"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1161/01.cir.97.6.535", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001546387"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1016/s1071-3581(96)90204-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002055366", 
              "https://doi.org/10.1016/s1071-3581(96)90204-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1161/circulationaha.107.743963", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003614423"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0735-1097(95)00218-s", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003662091"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12350-009-9049-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004460200", 
              "https://doi.org/10.1007/s12350-009-9049-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1253/circj.72.611", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013447441"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12149-007-0059-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017307682", 
              "https://doi.org/10.1007/s12149-007-0059-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00259-007-0600-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019435991", 
              "https://doi.org/10.1007/s00259-007-0600-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00259-007-0600-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019435991", 
              "https://doi.org/10.1007/s00259-007-0600-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1056/nejmoa070829", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022199950"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02262729", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022234671", 
              "https://doi.org/10.1007/bf02262729"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1016/j.nuclcard.2007.06.006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026930376", 
              "https://doi.org/10.1016/j.nuclcard.2007.06.006"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1016/j.nuclcard.2007.06.009", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029634138", 
              "https://doi.org/10.1016/j.nuclcard.2007.06.009"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1016/j.nuclcard.2004.03.033", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034051507", 
              "https://doi.org/10.1016/j.nuclcard.2004.03.033"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1016/j.nuclcard.2007.06.008", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035575086", 
              "https://doi.org/10.1016/j.nuclcard.2007.06.008"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00259-007-0608-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047509617", 
              "https://doi.org/10.1007/s00259-007-0608-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00259-007-0608-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047509617", 
              "https://doi.org/10.1007/s00259-007-0608-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1161/01.cir.93.5.905", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1063337019"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1074624304", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1074624305", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1074808943", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1082375161", 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2015-10", 
        "datePublishedReg": "2015-10-01", 
        "description": "OBJECTIVES: The currently available Japanese normal database (NDB) in stress myocardial perfusion scintigraphy recommended by the Japanese Society of Nuclear Medicine (JSNM-NDB) is created based on the data from exercise tests. The newly developed adenosine normal database (ADS-NDB) remains to be validated for patients undergoing adenosine stress test. We tested whether the diagnostic accuracy of adenosine stress test is improved by the use of ADS-NDB (Kanazawa University).\nMETHODS: Of 233 consecutive patients undergoing (99m)Tc-MIBI adenosine stress test, 112 patients were tested. The stress/rest myocardial (99m)Tc-MIBI single-photon emission computed tomography (SPECT) images were analyzed by AutoQUANT 7.2 with both ADS-NDB and JSNM-NDB. The summed stress score (SSS) and summed difference score (SDS) were calculated. The agreements of the post-stress defect severity between ADS-NDB and JSNM-NDB were assessed using a weighted kappa statistic.\nRESULTS: In all patients, mean SSSs of all, right coronary artery (RCA), left anterior descending (LAD), and left circumflex (LCx) territories were significantly lower with ADS-NDB than those with JSNM-NDB. Mean SDSs in all, RCA, and LAD territories were significantly lower with ADS-NDB than those with JSNM-NDB. In 28 patients with significant coronary stenosis, the mean SSS in the RCA territory was significantly lower with ADS-NDB than that with JSNM-NDB. In 84 patients without ischemia, both mean SSSs and SDSs in all, RCA, LAD, and LCx territories were significantly lower with ADS-NDB than those with JSNM-NDB. Weighted kappa values of all patients, patients with significant stenosis, and patients without ischemia were 0.89, 0.83, and 0.92, respectively.\nCONCLUSIONS: Differences were observed between results from ADS-NDB and JSNM-NDB. The diagnostic accuracy of adenosine stress myocardial perfusion scintigraphy may be improved by reducing false-positive results.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s12149-015-0995-1", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1099601", 
            "issn": [
              "0914-7187", 
              "1864-6433"
            ], 
            "name": "Annals of Nuclear Medicine", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "8", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "29"
          }
        ], 
        "name": "Application of the newly developed Japanese adenosine normal database for adenosine stress myocardial scintigraphy", 
        "pagination": "730-739", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "d48f5704f829c4c6268f58321de775158d128120e27acb4f7e8431a587cdd605"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "26134216"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "8913398"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s12149-015-0995-1"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1044623653"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s12149-015-0995-1", 
          "https://app.dimensions.ai/details/publication/pub.1044623653"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T20:00", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8681_00000524.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007%2Fs12149-015-0995-1"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12149-015-0995-1'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12149-015-0995-1'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12149-015-0995-1'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12149-015-0995-1'


     

    This table displays all metadata directly associated to this object as RDF triples.

    239 TRIPLES      21 PREDICATES      62 URIs      34 LITERALS      22 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s12149-015-0995-1 schema:about N2f143a0ea3b441a199a935f92b96e41b
    2 N3696ccbf51834e308e2bda333974c934
    3 N6964101d11cb4fa9af80de7c13cd40db
    4 N72a15c7afcf646a9a6f556afcc058cfa
    5 N7a62c0504da84a11987f7d9c016c308f
    6 N7ff0bae69da34179862d481c26da3aff
    7 N822da6325ee2474791c1d1f455b44cd4
    8 N9379d1727f0c40a6afa4082a6ec1bdf1
    9 Nac37737105f1453da809879715ffce6f
    10 Nb1c2521283b7405b8bf6656726745dcf
    11 Nd3115f01f4de4e378733c1d949692edc
    12 Nf72145f9240f4e6d8794f004997c41dd
    13 Nfe5d3ccb4817442187e647b0f128b34a
    14 anzsrc-for:11
    15 anzsrc-for:1102
    16 schema:author Nf05778f02de94ef0a138c77886bb2959
    17 schema:citation sg:pub.10.1007/bf02262729
    18 sg:pub.10.1007/s00259-007-0600-5
    19 sg:pub.10.1007/s00259-007-0608-x
    20 sg:pub.10.1007/s12149-007-0059-2
    21 sg:pub.10.1007/s12350-009-9049-1
    22 sg:pub.10.1016/j.nuclcard.2004.03.033
    23 sg:pub.10.1016/j.nuclcard.2007.06.006
    24 sg:pub.10.1016/j.nuclcard.2007.06.008
    25 sg:pub.10.1016/j.nuclcard.2007.06.009
    26 sg:pub.10.1016/s1071-3581(96)90204-4
    27 https://app.dimensions.ai/details/publication/pub.1074624304
    28 https://app.dimensions.ai/details/publication/pub.1074624305
    29 https://app.dimensions.ai/details/publication/pub.1074808943
    30 https://app.dimensions.ai/details/publication/pub.1082375161
    31 https://doi.org/10.1016/0735-1097(95)00218-s
    32 https://doi.org/10.1056/nejmoa070829
    33 https://doi.org/10.1161/01.cir.93.5.905
    34 https://doi.org/10.1161/01.cir.97.6.535
    35 https://doi.org/10.1161/circulationaha.107.743963
    36 https://doi.org/10.1253/circj.72.611
    37 schema:datePublished 2015-10
    38 schema:datePublishedReg 2015-10-01
    39 schema:description OBJECTIVES: The currently available Japanese normal database (NDB) in stress myocardial perfusion scintigraphy recommended by the Japanese Society of Nuclear Medicine (JSNM-NDB) is created based on the data from exercise tests. The newly developed adenosine normal database (ADS-NDB) remains to be validated for patients undergoing adenosine stress test. We tested whether the diagnostic accuracy of adenosine stress test is improved by the use of ADS-NDB (Kanazawa University). METHODS: Of 233 consecutive patients undergoing (99m)Tc-MIBI adenosine stress test, 112 patients were tested. The stress/rest myocardial (99m)Tc-MIBI single-photon emission computed tomography (SPECT) images were analyzed by AutoQUANT 7.2 with both ADS-NDB and JSNM-NDB. The summed stress score (SSS) and summed difference score (SDS) were calculated. The agreements of the post-stress defect severity between ADS-NDB and JSNM-NDB were assessed using a weighted kappa statistic. RESULTS: In all patients, mean SSSs of all, right coronary artery (RCA), left anterior descending (LAD), and left circumflex (LCx) territories were significantly lower with ADS-NDB than those with JSNM-NDB. Mean SDSs in all, RCA, and LAD territories were significantly lower with ADS-NDB than those with JSNM-NDB. In 28 patients with significant coronary stenosis, the mean SSS in the RCA territory was significantly lower with ADS-NDB than that with JSNM-NDB. In 84 patients without ischemia, both mean SSSs and SDSs in all, RCA, LAD, and LCx territories were significantly lower with ADS-NDB than those with JSNM-NDB. Weighted kappa values of all patients, patients with significant stenosis, and patients without ischemia were 0.89, 0.83, and 0.92, respectively. CONCLUSIONS: Differences were observed between results from ADS-NDB and JSNM-NDB. The diagnostic accuracy of adenosine stress myocardial perfusion scintigraphy may be improved by reducing false-positive results.
    40 schema:genre research_article
    41 schema:inLanguage en
    42 schema:isAccessibleForFree false
    43 schema:isPartOf Na8c447c68fd245f9845b07b9bd92d676
    44 Neb35f134ccb64c57869e970d443519ff
    45 sg:journal.1099601
    46 schema:name Application of the newly developed Japanese adenosine normal database for adenosine stress myocardial scintigraphy
    47 schema:pagination 730-739
    48 schema:productId N502855356e234e11a43c97eeeedaae20
    49 N87521112cbad48f8b74c74e9e1f6d5ec
    50 N914414a3320e4f4b9d664b57a8daa816
    51 Nb6285e87f55d4571a822ecd68b45a11e
    52 Ne4822cc9ea7b42d5b3260251fabbb845
    53 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044623653
    54 https://doi.org/10.1007/s12149-015-0995-1
    55 schema:sdDatePublished 2019-04-10T20:00
    56 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    57 schema:sdPublisher Na4c93e6ba7184d4d8bf3bbb3eded6e62
    58 schema:url http://link.springer.com/10.1007%2Fs12149-015-0995-1
    59 sgo:license sg:explorer/license/
    60 sgo:sdDataset articles
    61 rdf:type schema:ScholarlyArticle
    62 N2647fa824e0a4530943cd0a1fe374fc8 rdf:first sg:person.01237420520.15
    63 rdf:rest Nd957adba039849a786c692d9ba64c540
    64 N289b9379dc52437f91be401e1ce90b7e rdf:first sg:person.0661553140.19
    65 rdf:rest N349fa5b29f32411ba50e0682af2031e9
    66 N2f143a0ea3b441a199a935f92b96e41b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    67 schema:name Tomography, Emission-Computed, Single-Photon
    68 rdf:type schema:DefinedTerm
    69 N349fa5b29f32411ba50e0682af2031e9 rdf:first sg:person.01306246266.36
    70 rdf:rest Nd9d80f1a34dd47d2a36b323667c4a100
    71 N3696ccbf51834e308e2bda333974c934 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    72 schema:name Myocardial Perfusion Imaging
    73 rdf:type schema:DefinedTerm
    74 N502855356e234e11a43c97eeeedaae20 schema:name doi
    75 schema:value 10.1007/s12149-015-0995-1
    76 rdf:type schema:PropertyValue
    77 N6964101d11cb4fa9af80de7c13cd40db schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    78 schema:name Female
    79 rdf:type schema:DefinedTerm
    80 N72a15c7afcf646a9a6f556afcc058cfa schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    81 schema:name Stress, Physiological
    82 rdf:type schema:DefinedTerm
    83 N7a62c0504da84a11987f7d9c016c308f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    84 schema:name Adenosine
    85 rdf:type schema:DefinedTerm
    86 N7a886af79ae24f29b7039ef01d289e72 rdf:first sg:person.01166405657.56
    87 rdf:rest rdf:nil
    88 N7ff0bae69da34179862d481c26da3aff schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    89 schema:name Databases, Factual
    90 rdf:type schema:DefinedTerm
    91 N822da6325ee2474791c1d1f455b44cd4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    92 schema:name Coronary Artery Disease
    93 rdf:type schema:DefinedTerm
    94 N87521112cbad48f8b74c74e9e1f6d5ec schema:name readcube_id
    95 schema:value d48f5704f829c4c6268f58321de775158d128120e27acb4f7e8431a587cdd605
    96 rdf:type schema:PropertyValue
    97 N914414a3320e4f4b9d664b57a8daa816 schema:name dimensions_id
    98 schema:value pub.1044623653
    99 rdf:type schema:PropertyValue
    100 N9379d1727f0c40a6afa4082a6ec1bdf1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    101 schema:name Heart
    102 rdf:type schema:DefinedTerm
    103 Na4c93e6ba7184d4d8bf3bbb3eded6e62 schema:name Springer Nature - SN SciGraph project
    104 rdf:type schema:Organization
    105 Na8c447c68fd245f9845b07b9bd92d676 schema:issueNumber 8
    106 rdf:type schema:PublicationIssue
    107 Nac37737105f1453da809879715ffce6f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    108 schema:name Male
    109 rdf:type schema:DefinedTerm
    110 Nb1c2521283b7405b8bf6656726745dcf schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    111 schema:name Humans
    112 rdf:type schema:DefinedTerm
    113 Nb6285e87f55d4571a822ecd68b45a11e schema:name nlm_unique_id
    114 schema:value 8913398
    115 rdf:type schema:PropertyValue
    116 Nd3115f01f4de4e378733c1d949692edc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    117 schema:name Technetium Tc 99m Sestamibi
    118 rdf:type schema:DefinedTerm
    119 Nd957adba039849a786c692d9ba64c540 rdf:first sg:person.01127770740.37
    120 rdf:rest N289b9379dc52437f91be401e1ce90b7e
    121 Nd9d80f1a34dd47d2a36b323667c4a100 rdf:first sg:person.01202600702.34
    122 rdf:rest N7a886af79ae24f29b7039ef01d289e72
    123 Ndfe764efeb574db78cae44153c42e998 rdf:first sg:person.0621502257.09
    124 rdf:rest N2647fa824e0a4530943cd0a1fe374fc8
    125 Ne4822cc9ea7b42d5b3260251fabbb845 schema:name pubmed_id
    126 schema:value 26134216
    127 rdf:type schema:PropertyValue
    128 Neb35f134ccb64c57869e970d443519ff schema:volumeNumber 29
    129 rdf:type schema:PublicationVolume
    130 Nf05778f02de94ef0a138c77886bb2959 rdf:first sg:person.0664722634.68
    131 rdf:rest Ndfe764efeb574db78cae44153c42e998
    132 Nf72145f9240f4e6d8794f004997c41dd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    133 schema:name Sensitivity and Specificity
    134 rdf:type schema:DefinedTerm
    135 Nfe5d3ccb4817442187e647b0f128b34a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    136 schema:name Aged
    137 rdf:type schema:DefinedTerm
    138 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
    139 schema:name Medical and Health Sciences
    140 rdf:type schema:DefinedTerm
    141 anzsrc-for:1102 schema:inDefinedTermSet anzsrc-for:
    142 schema:name Cardiorespiratory Medicine and Haematology
    143 rdf:type schema:DefinedTerm
    144 sg:journal.1099601 schema:issn 0914-7187
    145 1864-6433
    146 schema:name Annals of Nuclear Medicine
    147 rdf:type schema:Periodical
    148 sg:person.01127770740.37 schema:affiliation https://www.grid.ac/institutes/grid.27476.30
    149 schema:familyName Suzuki
    150 schema:givenName Susumu
    151 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01127770740.37
    152 rdf:type schema:Person
    153 sg:person.01166405657.56 schema:affiliation https://www.grid.ac/institutes/grid.27476.30
    154 schema:familyName Murohara
    155 schema:givenName Toyoaki
    156 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01166405657.56
    157 rdf:type schema:Person
    158 sg:person.01202600702.34 schema:affiliation https://www.grid.ac/institutes/grid.27476.30
    159 schema:familyName Ishii
    160 schema:givenName Hideki
    161 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01202600702.34
    162 rdf:type schema:Person
    163 sg:person.01237420520.15 schema:affiliation https://www.grid.ac/institutes/grid.416762.0
    164 schema:familyName Morishima
    165 schema:givenName Itsuro
    166 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01237420520.15
    167 rdf:type schema:Person
    168 sg:person.01306246266.36 schema:affiliation https://www.grid.ac/institutes/grid.416762.0
    169 schema:familyName Sone
    170 schema:givenName Takahito
    171 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01306246266.36
    172 rdf:type schema:Person
    173 sg:person.0621502257.09 schema:affiliation https://www.grid.ac/institutes/grid.27476.30
    174 schema:familyName Isobe
    175 schema:givenName Satoshi
    176 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0621502257.09
    177 rdf:type schema:Person
    178 sg:person.0661553140.19 schema:affiliation https://www.grid.ac/institutes/grid.416762.0
    179 schema:familyName Tsuboi
    180 schema:givenName Hideyuki
    181 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0661553140.19
    182 rdf:type schema:Person
    183 sg:person.0664722634.68 schema:affiliation https://www.grid.ac/institutes/grid.27476.30
    184 schema:familyName Harata
    185 schema:givenName Shingo
    186 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0664722634.68
    187 rdf:type schema:Person
    188 sg:pub.10.1007/bf02262729 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022234671
    189 https://doi.org/10.1007/bf02262729
    190 rdf:type schema:CreativeWork
    191 sg:pub.10.1007/s00259-007-0600-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019435991
    192 https://doi.org/10.1007/s00259-007-0600-5
    193 rdf:type schema:CreativeWork
    194 sg:pub.10.1007/s00259-007-0608-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1047509617
    195 https://doi.org/10.1007/s00259-007-0608-x
    196 rdf:type schema:CreativeWork
    197 sg:pub.10.1007/s12149-007-0059-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017307682
    198 https://doi.org/10.1007/s12149-007-0059-2
    199 rdf:type schema:CreativeWork
    200 sg:pub.10.1007/s12350-009-9049-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004460200
    201 https://doi.org/10.1007/s12350-009-9049-1
    202 rdf:type schema:CreativeWork
    203 sg:pub.10.1016/j.nuclcard.2004.03.033 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034051507
    204 https://doi.org/10.1016/j.nuclcard.2004.03.033
    205 rdf:type schema:CreativeWork
    206 sg:pub.10.1016/j.nuclcard.2007.06.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026930376
    207 https://doi.org/10.1016/j.nuclcard.2007.06.006
    208 rdf:type schema:CreativeWork
    209 sg:pub.10.1016/j.nuclcard.2007.06.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035575086
    210 https://doi.org/10.1016/j.nuclcard.2007.06.008
    211 rdf:type schema:CreativeWork
    212 sg:pub.10.1016/j.nuclcard.2007.06.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029634138
    213 https://doi.org/10.1016/j.nuclcard.2007.06.009
    214 rdf:type schema:CreativeWork
    215 sg:pub.10.1016/s1071-3581(96)90204-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002055366
    216 https://doi.org/10.1016/s1071-3581(96)90204-4
    217 rdf:type schema:CreativeWork
    218 https://app.dimensions.ai/details/publication/pub.1074624304 schema:CreativeWork
    219 https://app.dimensions.ai/details/publication/pub.1074624305 schema:CreativeWork
    220 https://app.dimensions.ai/details/publication/pub.1074808943 schema:CreativeWork
    221 https://app.dimensions.ai/details/publication/pub.1082375161 schema:CreativeWork
    222 https://doi.org/10.1016/0735-1097(95)00218-s schema:sameAs https://app.dimensions.ai/details/publication/pub.1003662091
    223 rdf:type schema:CreativeWork
    224 https://doi.org/10.1056/nejmoa070829 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022199950
    225 rdf:type schema:CreativeWork
    226 https://doi.org/10.1161/01.cir.93.5.905 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063337019
    227 rdf:type schema:CreativeWork
    228 https://doi.org/10.1161/01.cir.97.6.535 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001546387
    229 rdf:type schema:CreativeWork
    230 https://doi.org/10.1161/circulationaha.107.743963 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003614423
    231 rdf:type schema:CreativeWork
    232 https://doi.org/10.1253/circj.72.611 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013447441
    233 rdf:type schema:CreativeWork
    234 https://www.grid.ac/institutes/grid.27476.30 schema:alternateName Nagoya University
    235 schema:name Department of Cardiology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, 466-8550, Nagoya, Japan
    236 rdf:type schema:Organization
    237 https://www.grid.ac/institutes/grid.416762.0 schema:alternateName Ogaki Municipal Hospital
    238 schema:name Department of Cardiology, Ogaki Municipal Hospital, Ogaki, Japan
    239 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...