Feasibility and kinetic characteristics of 68Ga-NOTA-RGD PET for in vivo atherosclerosis imaging View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2013-08-06

AUTHORS

Jin Chul Paeng, Yun-Sang Lee, Jae Sung Lee, Jae Min Jeong, Ki-Bong Kim, June-Key Chung, Dong Soo Lee

ABSTRACT

ObjectiveIn this study, the feasibility and kinetic characteristics of the 68Ga-NOTA-RGD, a recently developed RGD peptide agent, were investigated for atherosclerosis imaging in comparison with 18FDG.MethodsApoE−/− mice were fed a high-fat diet for more than 20 weeks. To evaluate the feasibility, tissue uptakes of 68Ga-NOTA-RGD and 18FDG in the major organs were measured and compared between ApoE−/− and control mice. Animal PET imaging was also performed and relative uptake values in the thoracic aorta were compared between ApoE−/− and control mice. In humans, the kinetic characteristics and feasibility of 68Ga-NOTA-RGD PET were assessed in 4 patients with known coronary artery disease.ResultsIn the tissue uptake study, the thoracic aorta showed higher uptake in ApoE−/− than in control mice with both 68Ga-NOTA-RGD and 18FDG (P < 0.001). On PET scans, the relative uptake values of the thoracic aorta were significantly higher in ApoE−/− with both 68Ga-NOTA-RGD (P = 0.024) and 18FDG (P = 0.038). In human PET, the appropriateness of reversible binding model and Logan plotting was clearly demonstrated. The aorta-to-jugular ratios were measured up to 1.25 and showed a tendency to correlate with the serum high-sensitivity C-reactive protein level (r = 0.899, P = 0.102).Conclusions68Ga-NOTA-RGD has potential as an in vivo atherosclerosis imaging agent. However, the lower imaging contrast and sensitivity of 68Ga-NOTA-RGD PET compared with 18FDG PET may be a limitation for clinical application. More... »

PAGES

847-854

References to SciGraph publications

  • 2009-07-23. 68Ga-DOTA-RGD peptide: biodistribution and binding into atherosclerotic plaques in mice in EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING
  • 2008-02-20. Imaging of atherosclerotic cardiovascular disease in NATURE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s12149-013-0757-x

    DOI

    http://dx.doi.org/10.1007/s12149-013-0757-x

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1044265896

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/23918450


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Medical and Health Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Clinical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Adult", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Aged", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Animals", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Atherosclerosis", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Coordination Complexes", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Feasibility Studies", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Kinetics", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Mice", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Middle Aged", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Oligopeptides", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Positron-Emission Tomography", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Nuclear Medicine, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, 110-744, Seoul, Korea", 
              "id": "http://www.grid.ac/institutes/grid.31501.36", 
              "name": [
                "Department of Nuclear Medicine, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, 110-744, Seoul, Korea"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Paeng", 
            "givenName": "Jin Chul", 
            "id": "sg:person.01343511335.32", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01343511335.32"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Nuclear Medicine, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, 110-744, Seoul, Korea", 
              "id": "http://www.grid.ac/institutes/grid.31501.36", 
              "name": [
                "Department of Nuclear Medicine, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, 110-744, Seoul, Korea"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lee", 
            "givenName": "Yun-Sang", 
            "id": "sg:person.01152420166.90", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01152420166.90"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Nuclear Medicine, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, 110-744, Seoul, Korea", 
              "id": "http://www.grid.ac/institutes/grid.31501.36", 
              "name": [
                "Department of Nuclear Medicine, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, 110-744, Seoul, Korea"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lee", 
            "givenName": "Jae Sung", 
            "id": "sg:person.0677005044.62", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0677005044.62"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Nuclear Medicine, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, 110-744, Seoul, Korea", 
              "id": "http://www.grid.ac/institutes/grid.31501.36", 
              "name": [
                "Department of Nuclear Medicine, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, 110-744, Seoul, Korea"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Jeong", 
            "givenName": "Jae Min", 
            "id": "sg:person.01301360400.94", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01301360400.94"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Thoracic and Cardiovascular Surgery, Seoul National University College of Medicine, Seoul, Korea", 
              "id": "http://www.grid.ac/institutes/grid.31501.36", 
              "name": [
                "Department of Thoracic and Cardiovascular Surgery, Seoul National University College of Medicine, Seoul, Korea"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kim", 
            "givenName": "Ki-Bong", 
            "id": "sg:person.0670226111.41", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0670226111.41"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Nuclear Medicine, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, 110-744, Seoul, Korea", 
              "id": "http://www.grid.ac/institutes/grid.31501.36", 
              "name": [
                "Department of Nuclear Medicine, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, 110-744, Seoul, Korea"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Chung", 
            "givenName": "June-Key", 
            "id": "sg:person.0751347234.39", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0751347234.39"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Molecular Medicine and Biopharmaceutical Sciences, Seoul National University, Seoul, Korea", 
              "id": "http://www.grid.ac/institutes/grid.31501.36", 
              "name": [
                "Department of Nuclear Medicine, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, 110-744, Seoul, Korea", 
                "Department of Molecular Medicine and Biopharmaceutical Sciences, Seoul National University, Seoul, Korea"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lee", 
            "givenName": "Dong Soo", 
            "id": "sg:person.015617314175.88", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015617314175.88"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s00259-009-1220-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044666902", 
              "https://doi.org/10.1007/s00259-009-1220-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature06803", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029131166", 
              "https://doi.org/10.1038/nature06803"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2013-08-06", 
        "datePublishedReg": "2013-08-06", 
        "description": "ObjectiveIn this study, the feasibility and kinetic characteristics of the 68Ga-NOTA-RGD, a recently developed RGD peptide agent, were investigated for atherosclerosis imaging in comparison with 18FDG.MethodsApoE\u2212/\u2212 mice were fed a high-fat diet for more than 20\u00a0weeks. To evaluate the feasibility, tissue uptakes of 68Ga-NOTA-RGD and 18FDG in the major organs were measured and compared between ApoE\u2212/\u2212 and control mice. Animal PET imaging was also performed and relative uptake values in the thoracic aorta were compared between ApoE\u2212/\u2212 and control mice. In humans, the kinetic characteristics and feasibility of 68Ga-NOTA-RGD PET were assessed in 4 patients with known coronary artery disease.ResultsIn the tissue uptake study, the thoracic aorta showed higher uptake in ApoE\u2212/\u2212 than in control mice with both 68Ga-NOTA-RGD and 18FDG (P\u00a0<\u00a00.001). On PET scans, the relative uptake values of the thoracic aorta were significantly higher in ApoE\u2212/\u2212 with both 68Ga-NOTA-RGD (P\u00a0=\u00a00.024) and 18FDG (P\u00a0=\u00a00.038). In human PET, the appropriateness of reversible binding model and Logan plotting was clearly demonstrated. The aorta-to-jugular ratios were measured up to 1.25 and showed a tendency to correlate with the serum high-sensitivity C-reactive protein level (r\u00a0=\u00a00.899, P\u00a0=\u00a00.102).Conclusions68Ga-NOTA-RGD has potential as an in vivo atherosclerosis imaging agent. However, the lower imaging contrast and sensitivity of 68Ga-NOTA-RGD PET compared with 18FDG PET may be a limitation for clinical application.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s12149-013-0757-x", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1099601", 
            "issn": [
              "0914-7187", 
              "1864-6433"
            ], 
            "name": "Annals of Nuclear Medicine", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "9", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "27"
          }
        ], 
        "keywords": [
          "control mice", 
          "thoracic aorta", 
          "RGD PET", 
          "relative uptake values", 
          "serum high-sensitivity C-reactive protein levels", 
          "high-sensitivity C-reactive protein levels", 
          "uptake value", 
          "C-reactive protein levels", 
          "coronary artery disease", 
          "high-fat diet", 
          "tissue uptake studies", 
          "artery disease", 
          "PET scans", 
          "tissue uptake", 
          "aorta", 
          "major organs", 
          "mice", 
          "PET imaging", 
          "protein levels", 
          "clinical application", 
          "high uptake", 
          "atherosclerosis", 
          "imaging agent", 
          "peptide agents", 
          "uptake studies", 
          "human PET", 
          "animal PET imaging", 
          "PET", 
          "patients", 
          "agents", 
          "disease", 
          "ResultsIn", 
          "uptake", 
          "weeks", 
          "diet", 
          "RGD", 
          "scans", 
          "ObjectiveIn", 
          "organs", 
          "study", 
          "imaging", 
          "humans", 
          "feasibility", 
          "kinetic characteristics", 
          "levels", 
          "appropriateness", 
          "sensitivity", 
          "contrast", 
          "characteristics", 
          "values", 
          "ratio", 
          "comparison", 
          "tendency", 
          "limitations", 
          "model", 
          "Logan", 
          "applications"
        ], 
        "name": "Feasibility and kinetic characteristics of 68Ga-NOTA-RGD PET for in vivo atherosclerosis imaging", 
        "pagination": "847-854", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1044265896"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s12149-013-0757-x"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "23918450"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s12149-013-0757-x", 
          "https://app.dimensions.ai/details/publication/pub.1044265896"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-09-02T15:56", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_613.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s12149-013-0757-x"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12149-013-0757-x'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12149-013-0757-x'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12149-013-0757-x'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12149-013-0757-x'


     

    This table displays all metadata directly associated to this object as RDF triples.

    220 TRIPLES      21 PREDICATES      96 URIs      86 LITERALS      19 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s12149-013-0757-x schema:about N006dd0e40a094752984276517b19bf97
    2 N0311f80693964bee8203d7fef9610c0b
    3 N0a2866bcf8f24767a7a76506e5377df8
    4 N2ea66cfddc5a4213b52b9f404604322e
    5 N5ddb6892b5ce49aa98196335c0aaa1a2
    6 N5f6bfb24dbce48c5ab7996723c421a6f
    7 N80bd8a41199648d795a04877d86a6b0f
    8 N9adb3a5998574496a15f695bd62c9496
    9 Nab12994cdd6b456fbb51f19a77285d03
    10 Nb746bd2a5ec14ecc9b4b190dc41b4863
    11 Ndec451059f1c43269b3a659f354196a3
    12 Ne9eb46a5366f4c0885fa7efd9e2174dd
    13 anzsrc-for:11
    14 anzsrc-for:1103
    15 schema:author N0a1022c68fb946ba9b6c5cd8d7f3d3c2
    16 schema:citation sg:pub.10.1007/s00259-009-1220-z
    17 sg:pub.10.1038/nature06803
    18 schema:datePublished 2013-08-06
    19 schema:datePublishedReg 2013-08-06
    20 schema:description ObjectiveIn this study, the feasibility and kinetic characteristics of the 68Ga-NOTA-RGD, a recently developed RGD peptide agent, were investigated for atherosclerosis imaging in comparison with 18FDG.MethodsApoE−/− mice were fed a high-fat diet for more than 20 weeks. To evaluate the feasibility, tissue uptakes of 68Ga-NOTA-RGD and 18FDG in the major organs were measured and compared between ApoE−/− and control mice. Animal PET imaging was also performed and relative uptake values in the thoracic aorta were compared between ApoE−/− and control mice. In humans, the kinetic characteristics and feasibility of 68Ga-NOTA-RGD PET were assessed in 4 patients with known coronary artery disease.ResultsIn the tissue uptake study, the thoracic aorta showed higher uptake in ApoE−/− than in control mice with both 68Ga-NOTA-RGD and 18FDG (P < 0.001). On PET scans, the relative uptake values of the thoracic aorta were significantly higher in ApoE−/− with both 68Ga-NOTA-RGD (P = 0.024) and 18FDG (P = 0.038). In human PET, the appropriateness of reversible binding model and Logan plotting was clearly demonstrated. The aorta-to-jugular ratios were measured up to 1.25 and showed a tendency to correlate with the serum high-sensitivity C-reactive protein level (r = 0.899, P = 0.102).Conclusions68Ga-NOTA-RGD has potential as an in vivo atherosclerosis imaging agent. However, the lower imaging contrast and sensitivity of 68Ga-NOTA-RGD PET compared with 18FDG PET may be a limitation for clinical application.
    21 schema:genre article
    22 schema:isAccessibleForFree false
    23 schema:isPartOf N9beda36885bc42ec806f9b5139d1202d
    24 Nabb6617bd5d44ea4a830dd67051af22f
    25 sg:journal.1099601
    26 schema:keywords C-reactive protein levels
    27 Logan
    28 ObjectiveIn
    29 PET
    30 PET imaging
    31 PET scans
    32 RGD
    33 RGD PET
    34 ResultsIn
    35 agents
    36 animal PET imaging
    37 aorta
    38 applications
    39 appropriateness
    40 artery disease
    41 atherosclerosis
    42 characteristics
    43 clinical application
    44 comparison
    45 contrast
    46 control mice
    47 coronary artery disease
    48 diet
    49 disease
    50 feasibility
    51 high uptake
    52 high-fat diet
    53 high-sensitivity C-reactive protein levels
    54 human PET
    55 humans
    56 imaging
    57 imaging agent
    58 kinetic characteristics
    59 levels
    60 limitations
    61 major organs
    62 mice
    63 model
    64 organs
    65 patients
    66 peptide agents
    67 protein levels
    68 ratio
    69 relative uptake values
    70 scans
    71 sensitivity
    72 serum high-sensitivity C-reactive protein levels
    73 study
    74 tendency
    75 thoracic aorta
    76 tissue uptake
    77 tissue uptake studies
    78 uptake
    79 uptake studies
    80 uptake value
    81 values
    82 weeks
    83 schema:name Feasibility and kinetic characteristics of 68Ga-NOTA-RGD PET for in vivo atherosclerosis imaging
    84 schema:pagination 847-854
    85 schema:productId N4e5cab088a4248eabf0e02d6eecc220a
    86 Nb5b99f07ad9a475fb5d4ec43895f4eb7
    87 Nf782c25b9da04929a42c89a4bd40aee6
    88 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044265896
    89 https://doi.org/10.1007/s12149-013-0757-x
    90 schema:sdDatePublished 2022-09-02T15:56
    91 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    92 schema:sdPublisher Na308c855200b4a0daf2244f4cb0f6f71
    93 schema:url https://doi.org/10.1007/s12149-013-0757-x
    94 sgo:license sg:explorer/license/
    95 sgo:sdDataset articles
    96 rdf:type schema:ScholarlyArticle
    97 N006dd0e40a094752984276517b19bf97 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    98 schema:name Animals
    99 rdf:type schema:DefinedTerm
    100 N0311f80693964bee8203d7fef9610c0b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    101 schema:name Kinetics
    102 rdf:type schema:DefinedTerm
    103 N0a1022c68fb946ba9b6c5cd8d7f3d3c2 rdf:first sg:person.01343511335.32
    104 rdf:rest N9b147ae56f79415091124ef4b29545d5
    105 N0a2866bcf8f24767a7a76506e5377df8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    106 schema:name Aged
    107 rdf:type schema:DefinedTerm
    108 N0ac38c61ecfc4d6d98be4f0ce4bcee56 rdf:first sg:person.0751347234.39
    109 rdf:rest N64134afac76d4c789b4b65e27ff0839f
    110 N2ea66cfddc5a4213b52b9f404604322e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    111 schema:name Atherosclerosis
    112 rdf:type schema:DefinedTerm
    113 N4e5cab088a4248eabf0e02d6eecc220a schema:name pubmed_id
    114 schema:value 23918450
    115 rdf:type schema:PropertyValue
    116 N5ddb6892b5ce49aa98196335c0aaa1a2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    117 schema:name Middle Aged
    118 rdf:type schema:DefinedTerm
    119 N5f6bfb24dbce48c5ab7996723c421a6f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    120 schema:name Feasibility Studies
    121 rdf:type schema:DefinedTerm
    122 N64134afac76d4c789b4b65e27ff0839f rdf:first sg:person.015617314175.88
    123 rdf:rest rdf:nil
    124 N80bd8a41199648d795a04877d86a6b0f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    125 schema:name Positron-Emission Tomography
    126 rdf:type schema:DefinedTerm
    127 N8283bd10c2354ee1a0e2d4be23c8d859 rdf:first sg:person.01301360400.94
    128 rdf:rest Ne6a9014e18a94f568913d5cdfd54e61d
    129 N86daacd1605a439fa3b5719036022add rdf:first sg:person.0677005044.62
    130 rdf:rest N8283bd10c2354ee1a0e2d4be23c8d859
    131 N9adb3a5998574496a15f695bd62c9496 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    132 schema:name Humans
    133 rdf:type schema:DefinedTerm
    134 N9b147ae56f79415091124ef4b29545d5 rdf:first sg:person.01152420166.90
    135 rdf:rest N86daacd1605a439fa3b5719036022add
    136 N9beda36885bc42ec806f9b5139d1202d schema:issueNumber 9
    137 rdf:type schema:PublicationIssue
    138 Na308c855200b4a0daf2244f4cb0f6f71 schema:name Springer Nature - SN SciGraph project
    139 rdf:type schema:Organization
    140 Nab12994cdd6b456fbb51f19a77285d03 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    141 schema:name Oligopeptides
    142 rdf:type schema:DefinedTerm
    143 Nabb6617bd5d44ea4a830dd67051af22f schema:volumeNumber 27
    144 rdf:type schema:PublicationVolume
    145 Nb5b99f07ad9a475fb5d4ec43895f4eb7 schema:name dimensions_id
    146 schema:value pub.1044265896
    147 rdf:type schema:PropertyValue
    148 Nb746bd2a5ec14ecc9b4b190dc41b4863 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    149 schema:name Adult
    150 rdf:type schema:DefinedTerm
    151 Ndec451059f1c43269b3a659f354196a3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    152 schema:name Coordination Complexes
    153 rdf:type schema:DefinedTerm
    154 Ne6a9014e18a94f568913d5cdfd54e61d rdf:first sg:person.0670226111.41
    155 rdf:rest N0ac38c61ecfc4d6d98be4f0ce4bcee56
    156 Ne9eb46a5366f4c0885fa7efd9e2174dd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    157 schema:name Mice
    158 rdf:type schema:DefinedTerm
    159 Nf782c25b9da04929a42c89a4bd40aee6 schema:name doi
    160 schema:value 10.1007/s12149-013-0757-x
    161 rdf:type schema:PropertyValue
    162 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
    163 schema:name Medical and Health Sciences
    164 rdf:type schema:DefinedTerm
    165 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
    166 schema:name Clinical Sciences
    167 rdf:type schema:DefinedTerm
    168 sg:journal.1099601 schema:issn 0914-7187
    169 1864-6433
    170 schema:name Annals of Nuclear Medicine
    171 schema:publisher Springer Nature
    172 rdf:type schema:Periodical
    173 sg:person.01152420166.90 schema:affiliation grid-institutes:grid.31501.36
    174 schema:familyName Lee
    175 schema:givenName Yun-Sang
    176 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01152420166.90
    177 rdf:type schema:Person
    178 sg:person.01301360400.94 schema:affiliation grid-institutes:grid.31501.36
    179 schema:familyName Jeong
    180 schema:givenName Jae Min
    181 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01301360400.94
    182 rdf:type schema:Person
    183 sg:person.01343511335.32 schema:affiliation grid-institutes:grid.31501.36
    184 schema:familyName Paeng
    185 schema:givenName Jin Chul
    186 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01343511335.32
    187 rdf:type schema:Person
    188 sg:person.015617314175.88 schema:affiliation grid-institutes:grid.31501.36
    189 schema:familyName Lee
    190 schema:givenName Dong Soo
    191 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015617314175.88
    192 rdf:type schema:Person
    193 sg:person.0670226111.41 schema:affiliation grid-institutes:grid.31501.36
    194 schema:familyName Kim
    195 schema:givenName Ki-Bong
    196 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0670226111.41
    197 rdf:type schema:Person
    198 sg:person.0677005044.62 schema:affiliation grid-institutes:grid.31501.36
    199 schema:familyName Lee
    200 schema:givenName Jae Sung
    201 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0677005044.62
    202 rdf:type schema:Person
    203 sg:person.0751347234.39 schema:affiliation grid-institutes:grid.31501.36
    204 schema:familyName Chung
    205 schema:givenName June-Key
    206 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0751347234.39
    207 rdf:type schema:Person
    208 sg:pub.10.1007/s00259-009-1220-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1044666902
    209 https://doi.org/10.1007/s00259-009-1220-z
    210 rdf:type schema:CreativeWork
    211 sg:pub.10.1038/nature06803 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029131166
    212 https://doi.org/10.1038/nature06803
    213 rdf:type schema:CreativeWork
    214 grid-institutes:grid.31501.36 schema:alternateName Department of Molecular Medicine and Biopharmaceutical Sciences, Seoul National University, Seoul, Korea
    215 Department of Nuclear Medicine, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, 110-744, Seoul, Korea
    216 Department of Thoracic and Cardiovascular Surgery, Seoul National University College of Medicine, Seoul, Korea
    217 schema:name Department of Molecular Medicine and Biopharmaceutical Sciences, Seoul National University, Seoul, Korea
    218 Department of Nuclear Medicine, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, 110-744, Seoul, Korea
    219 Department of Thoracic and Cardiovascular Surgery, Seoul National University College of Medicine, Seoul, Korea
    220 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...