Feasibility and kinetic characteristics of 68Ga-NOTA-RGD PET for in vivo atherosclerosis imaging View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2013-08-06

AUTHORS

Jin Chul Paeng, Yun-Sang Lee, Jae Sung Lee, Jae Min Jeong, Ki-Bong Kim, June-Key Chung, Dong Soo Lee

ABSTRACT

ObjectiveIn this study, the feasibility and kinetic characteristics of the 68Ga-NOTA-RGD, a recently developed RGD peptide agent, were investigated for atherosclerosis imaging in comparison with 18FDG.MethodsApoE−/− mice were fed a high-fat diet for more than 20 weeks. To evaluate the feasibility, tissue uptakes of 68Ga-NOTA-RGD and 18FDG in the major organs were measured and compared between ApoE−/− and control mice. Animal PET imaging was also performed and relative uptake values in the thoracic aorta were compared between ApoE−/− and control mice. In humans, the kinetic characteristics and feasibility of 68Ga-NOTA-RGD PET were assessed in 4 patients with known coronary artery disease.ResultsIn the tissue uptake study, the thoracic aorta showed higher uptake in ApoE−/− than in control mice with both 68Ga-NOTA-RGD and 18FDG (P < 0.001). On PET scans, the relative uptake values of the thoracic aorta were significantly higher in ApoE−/− with both 68Ga-NOTA-RGD (P = 0.024) and 18FDG (P = 0.038). In human PET, the appropriateness of reversible binding model and Logan plotting was clearly demonstrated. The aorta-to-jugular ratios were measured up to 1.25 and showed a tendency to correlate with the serum high-sensitivity C-reactive protein level (r = 0.899, P = 0.102).Conclusions68Ga-NOTA-RGD has potential as an in vivo atherosclerosis imaging agent. However, the lower imaging contrast and sensitivity of 68Ga-NOTA-RGD PET compared with 18FDG PET may be a limitation for clinical application. More... »

PAGES

847-854

References to SciGraph publications

  • 2009-07-23. 68Ga-DOTA-RGD peptide: biodistribution and binding into atherosclerotic plaques in mice in EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING
  • 2008-02-20. Imaging of atherosclerotic cardiovascular disease in NATURE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s12149-013-0757-x

    DOI

    http://dx.doi.org/10.1007/s12149-013-0757-x

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1044265896

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/23918450


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Medical and Health Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Clinical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Adult", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Aged", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Animals", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Atherosclerosis", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Coordination Complexes", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Feasibility Studies", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Kinetics", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Mice", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Middle Aged", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Oligopeptides", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Positron-Emission Tomography", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Nuclear Medicine, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, 110-744, Seoul, Korea", 
              "id": "http://www.grid.ac/institutes/grid.31501.36", 
              "name": [
                "Department of Nuclear Medicine, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, 110-744, Seoul, Korea"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Paeng", 
            "givenName": "Jin Chul", 
            "id": "sg:person.01343511335.32", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01343511335.32"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Nuclear Medicine, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, 110-744, Seoul, Korea", 
              "id": "http://www.grid.ac/institutes/grid.31501.36", 
              "name": [
                "Department of Nuclear Medicine, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, 110-744, Seoul, Korea"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lee", 
            "givenName": "Yun-Sang", 
            "id": "sg:person.01152420166.90", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01152420166.90"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Nuclear Medicine, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, 110-744, Seoul, Korea", 
              "id": "http://www.grid.ac/institutes/grid.31501.36", 
              "name": [
                "Department of Nuclear Medicine, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, 110-744, Seoul, Korea"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lee", 
            "givenName": "Jae Sung", 
            "id": "sg:person.0677005044.62", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0677005044.62"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Nuclear Medicine, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, 110-744, Seoul, Korea", 
              "id": "http://www.grid.ac/institutes/grid.31501.36", 
              "name": [
                "Department of Nuclear Medicine, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, 110-744, Seoul, Korea"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Jeong", 
            "givenName": "Jae Min", 
            "id": "sg:person.01301360400.94", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01301360400.94"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Thoracic and Cardiovascular Surgery, Seoul National University College of Medicine, Seoul, Korea", 
              "id": "http://www.grid.ac/institutes/grid.31501.36", 
              "name": [
                "Department of Thoracic and Cardiovascular Surgery, Seoul National University College of Medicine, Seoul, Korea"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kim", 
            "givenName": "Ki-Bong", 
            "id": "sg:person.0670226111.41", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0670226111.41"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Nuclear Medicine, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, 110-744, Seoul, Korea", 
              "id": "http://www.grid.ac/institutes/grid.31501.36", 
              "name": [
                "Department of Nuclear Medicine, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, 110-744, Seoul, Korea"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Chung", 
            "givenName": "June-Key", 
            "id": "sg:person.0751347234.39", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0751347234.39"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Molecular Medicine and Biopharmaceutical Sciences, Seoul National University, Seoul, Korea", 
              "id": "http://www.grid.ac/institutes/grid.31501.36", 
              "name": [
                "Department of Nuclear Medicine, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, 110-744, Seoul, Korea", 
                "Department of Molecular Medicine and Biopharmaceutical Sciences, Seoul National University, Seoul, Korea"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lee", 
            "givenName": "Dong Soo", 
            "id": "sg:person.015617314175.88", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015617314175.88"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s00259-009-1220-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044666902", 
              "https://doi.org/10.1007/s00259-009-1220-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature06803", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029131166", 
              "https://doi.org/10.1038/nature06803"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2013-08-06", 
        "datePublishedReg": "2013-08-06", 
        "description": "ObjectiveIn this study, the feasibility and kinetic characteristics of the 68Ga-NOTA-RGD, a recently developed RGD peptide agent, were investigated for atherosclerosis imaging in comparison with 18FDG.MethodsApoE\u2212/\u2212 mice were fed a high-fat diet for more than 20\u00a0weeks. To evaluate the feasibility, tissue uptakes of 68Ga-NOTA-RGD and 18FDG in the major organs were measured and compared between ApoE\u2212/\u2212 and control mice. Animal PET imaging was also performed and relative uptake values in the thoracic aorta were compared between ApoE\u2212/\u2212 and control mice. In humans, the kinetic characteristics and feasibility of 68Ga-NOTA-RGD PET were assessed in 4 patients with known coronary artery disease.ResultsIn the tissue uptake study, the thoracic aorta showed higher uptake in ApoE\u2212/\u2212 than in control mice with both 68Ga-NOTA-RGD and 18FDG (P\u00a0<\u00a00.001). On PET scans, the relative uptake values of the thoracic aorta were significantly higher in ApoE\u2212/\u2212 with both 68Ga-NOTA-RGD (P\u00a0=\u00a00.024) and 18FDG (P\u00a0=\u00a00.038). In human PET, the appropriateness of reversible binding model and Logan plotting was clearly demonstrated. The aorta-to-jugular ratios were measured up to 1.25 and showed a tendency to correlate with the serum high-sensitivity C-reactive protein level (r\u00a0=\u00a00.899, P\u00a0=\u00a00.102).Conclusions68Ga-NOTA-RGD has potential as an in vivo atherosclerosis imaging agent. However, the lower imaging contrast and sensitivity of 68Ga-NOTA-RGD PET compared with 18FDG PET may be a limitation for clinical application.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s12149-013-0757-x", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1099601", 
            "issn": [
              "0914-7187", 
              "1864-6433"
            ], 
            "name": "Annals of Nuclear Medicine", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "9", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "27"
          }
        ], 
        "keywords": [
          "control mice", 
          "thoracic aorta", 
          "RGD PET", 
          "relative uptake values", 
          "serum high-sensitivity C-reactive protein levels", 
          "high-sensitivity C-reactive protein levels", 
          "uptake value", 
          "C-reactive protein levels", 
          "coronary artery disease", 
          "high-fat diet", 
          "tissue uptake studies", 
          "artery disease", 
          "PET scans", 
          "tissue uptake", 
          "aorta", 
          "major organs", 
          "mice", 
          "PET imaging", 
          "protein levels", 
          "clinical application", 
          "high uptake", 
          "atherosclerosis", 
          "imaging agent", 
          "peptide agents", 
          "uptake studies", 
          "human PET", 
          "animal PET imaging", 
          "PET", 
          "patients", 
          "agents", 
          "disease", 
          "ResultsIn", 
          "uptake", 
          "weeks", 
          "diet", 
          "RGD", 
          "scans", 
          "ObjectiveIn", 
          "organs", 
          "study", 
          "imaging", 
          "humans", 
          "feasibility", 
          "kinetic characteristics", 
          "levels", 
          "appropriateness", 
          "sensitivity", 
          "contrast", 
          "characteristics", 
          "values", 
          "ratio", 
          "comparison", 
          "tendency", 
          "limitations", 
          "model", 
          "Logan", 
          "applications"
        ], 
        "name": "Feasibility and kinetic characteristics of 68Ga-NOTA-RGD PET for in vivo atherosclerosis imaging", 
        "pagination": "847-854", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1044265896"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s12149-013-0757-x"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "23918450"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s12149-013-0757-x", 
          "https://app.dimensions.ai/details/publication/pub.1044265896"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-12-01T06:31", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_605.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s12149-013-0757-x"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12149-013-0757-x'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12149-013-0757-x'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12149-013-0757-x'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12149-013-0757-x'


     

    This table displays all metadata directly associated to this object as RDF triples.

    220 TRIPLES      21 PREDICATES      96 URIs      86 LITERALS      19 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s12149-013-0757-x schema:about N10537c4ffaa04c4fad88e05a4720f540
    2 N11c5708eef07489b86903b99f5780771
    3 N50c7f774b90e46bc894cf9ae742793d0
    4 N8336544aefe545279df4d1bde6cfabf1
    5 N85c7c175904e4c29abd0446d2bfc94a9
    6 N9eb7cce175674aa78510e36d20496c51
    7 Na023a8ecc4724001bc0315c069b0ddac
    8 Nbd0d256cab014c8fb7c8e9312bdf2738
    9 Ncbdb0f0d1c9840afa8575b0face39032
    10 Nd7a95db0787e4d8b82569c12e8c135e6
    11 Nf4976b12cc2140098bd3d795f25437ff
    12 Nfb3e65d80c3943f6b966479f9a38f31e
    13 anzsrc-for:11
    14 anzsrc-for:1103
    15 schema:author Ne3a095ed753d4435a2ed0c5a08b33690
    16 schema:citation sg:pub.10.1007/s00259-009-1220-z
    17 sg:pub.10.1038/nature06803
    18 schema:datePublished 2013-08-06
    19 schema:datePublishedReg 2013-08-06
    20 schema:description ObjectiveIn this study, the feasibility and kinetic characteristics of the 68Ga-NOTA-RGD, a recently developed RGD peptide agent, were investigated for atherosclerosis imaging in comparison with 18FDG.MethodsApoE−/− mice were fed a high-fat diet for more than 20 weeks. To evaluate the feasibility, tissue uptakes of 68Ga-NOTA-RGD and 18FDG in the major organs were measured and compared between ApoE−/− and control mice. Animal PET imaging was also performed and relative uptake values in the thoracic aorta were compared between ApoE−/− and control mice. In humans, the kinetic characteristics and feasibility of 68Ga-NOTA-RGD PET were assessed in 4 patients with known coronary artery disease.ResultsIn the tissue uptake study, the thoracic aorta showed higher uptake in ApoE−/− than in control mice with both 68Ga-NOTA-RGD and 18FDG (P < 0.001). On PET scans, the relative uptake values of the thoracic aorta were significantly higher in ApoE−/− with both 68Ga-NOTA-RGD (P = 0.024) and 18FDG (P = 0.038). In human PET, the appropriateness of reversible binding model and Logan plotting was clearly demonstrated. The aorta-to-jugular ratios were measured up to 1.25 and showed a tendency to correlate with the serum high-sensitivity C-reactive protein level (r = 0.899, P = 0.102).Conclusions68Ga-NOTA-RGD has potential as an in vivo atherosclerosis imaging agent. However, the lower imaging contrast and sensitivity of 68Ga-NOTA-RGD PET compared with 18FDG PET may be a limitation for clinical application.
    21 schema:genre article
    22 schema:isAccessibleForFree false
    23 schema:isPartOf N97e3d9ca15e44f65abe18272bbbf18c5
    24 Nfde6449bb337442cb298a7785660d8f9
    25 sg:journal.1099601
    26 schema:keywords C-reactive protein levels
    27 Logan
    28 ObjectiveIn
    29 PET
    30 PET imaging
    31 PET scans
    32 RGD
    33 RGD PET
    34 ResultsIn
    35 agents
    36 animal PET imaging
    37 aorta
    38 applications
    39 appropriateness
    40 artery disease
    41 atherosclerosis
    42 characteristics
    43 clinical application
    44 comparison
    45 contrast
    46 control mice
    47 coronary artery disease
    48 diet
    49 disease
    50 feasibility
    51 high uptake
    52 high-fat diet
    53 high-sensitivity C-reactive protein levels
    54 human PET
    55 humans
    56 imaging
    57 imaging agent
    58 kinetic characteristics
    59 levels
    60 limitations
    61 major organs
    62 mice
    63 model
    64 organs
    65 patients
    66 peptide agents
    67 protein levels
    68 ratio
    69 relative uptake values
    70 scans
    71 sensitivity
    72 serum high-sensitivity C-reactive protein levels
    73 study
    74 tendency
    75 thoracic aorta
    76 tissue uptake
    77 tissue uptake studies
    78 uptake
    79 uptake studies
    80 uptake value
    81 values
    82 weeks
    83 schema:name Feasibility and kinetic characteristics of 68Ga-NOTA-RGD PET for in vivo atherosclerosis imaging
    84 schema:pagination 847-854
    85 schema:productId N3555023ad9224a2a9fe19d2007764e74
    86 N6f546200476c4eeb94783e2eeafdb608
    87 Ne3edfbdaf710494d9f3f44648035f420
    88 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044265896
    89 https://doi.org/10.1007/s12149-013-0757-x
    90 schema:sdDatePublished 2022-12-01T06:31
    91 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    92 schema:sdPublisher N3641785138264491a546ee3cc0f577f1
    93 schema:url https://doi.org/10.1007/s12149-013-0757-x
    94 sgo:license sg:explorer/license/
    95 sgo:sdDataset articles
    96 rdf:type schema:ScholarlyArticle
    97 N0133c74dad9c45c4937448936e88e1b9 rdf:first sg:person.0670226111.41
    98 rdf:rest N7546817a6a61487f8c1b2033b9105465
    99 N10537c4ffaa04c4fad88e05a4720f540 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    100 schema:name Aged
    101 rdf:type schema:DefinedTerm
    102 N11c5708eef07489b86903b99f5780771 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    103 schema:name Mice
    104 rdf:type schema:DefinedTerm
    105 N3555023ad9224a2a9fe19d2007764e74 schema:name dimensions_id
    106 schema:value pub.1044265896
    107 rdf:type schema:PropertyValue
    108 N3641785138264491a546ee3cc0f577f1 schema:name Springer Nature - SN SciGraph project
    109 rdf:type schema:Organization
    110 N48440ce727ee466f9d686ff7535aa73d rdf:first sg:person.01152420166.90
    111 rdf:rest N5eebe9cf78f3475195442c28371e43f1
    112 N50c7f774b90e46bc894cf9ae742793d0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    113 schema:name Middle Aged
    114 rdf:type schema:DefinedTerm
    115 N5eebe9cf78f3475195442c28371e43f1 rdf:first sg:person.0677005044.62
    116 rdf:rest Nd18ad40dcee241ceba00823407f9cd79
    117 N6f546200476c4eeb94783e2eeafdb608 schema:name pubmed_id
    118 schema:value 23918450
    119 rdf:type schema:PropertyValue
    120 N7546817a6a61487f8c1b2033b9105465 rdf:first sg:person.0751347234.39
    121 rdf:rest Nbf457a3bed6541a0852070d6403839a6
    122 N8336544aefe545279df4d1bde6cfabf1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    123 schema:name Adult
    124 rdf:type schema:DefinedTerm
    125 N85c7c175904e4c29abd0446d2bfc94a9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    126 schema:name Atherosclerosis
    127 rdf:type schema:DefinedTerm
    128 N97e3d9ca15e44f65abe18272bbbf18c5 schema:volumeNumber 27
    129 rdf:type schema:PublicationVolume
    130 N9eb7cce175674aa78510e36d20496c51 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    131 schema:name Humans
    132 rdf:type schema:DefinedTerm
    133 Na023a8ecc4724001bc0315c069b0ddac schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    134 schema:name Kinetics
    135 rdf:type schema:DefinedTerm
    136 Nbd0d256cab014c8fb7c8e9312bdf2738 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    137 schema:name Positron-Emission Tomography
    138 rdf:type schema:DefinedTerm
    139 Nbf457a3bed6541a0852070d6403839a6 rdf:first sg:person.015617314175.88
    140 rdf:rest rdf:nil
    141 Ncbdb0f0d1c9840afa8575b0face39032 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    142 schema:name Animals
    143 rdf:type schema:DefinedTerm
    144 Nd18ad40dcee241ceba00823407f9cd79 rdf:first sg:person.01301360400.94
    145 rdf:rest N0133c74dad9c45c4937448936e88e1b9
    146 Nd7a95db0787e4d8b82569c12e8c135e6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    147 schema:name Oligopeptides
    148 rdf:type schema:DefinedTerm
    149 Ne3a095ed753d4435a2ed0c5a08b33690 rdf:first sg:person.01343511335.32
    150 rdf:rest N48440ce727ee466f9d686ff7535aa73d
    151 Ne3edfbdaf710494d9f3f44648035f420 schema:name doi
    152 schema:value 10.1007/s12149-013-0757-x
    153 rdf:type schema:PropertyValue
    154 Nf4976b12cc2140098bd3d795f25437ff schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    155 schema:name Coordination Complexes
    156 rdf:type schema:DefinedTerm
    157 Nfb3e65d80c3943f6b966479f9a38f31e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    158 schema:name Feasibility Studies
    159 rdf:type schema:DefinedTerm
    160 Nfde6449bb337442cb298a7785660d8f9 schema:issueNumber 9
    161 rdf:type schema:PublicationIssue
    162 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
    163 schema:name Medical and Health Sciences
    164 rdf:type schema:DefinedTerm
    165 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
    166 schema:name Clinical Sciences
    167 rdf:type schema:DefinedTerm
    168 sg:journal.1099601 schema:issn 0914-7187
    169 1864-6433
    170 schema:name Annals of Nuclear Medicine
    171 schema:publisher Springer Nature
    172 rdf:type schema:Periodical
    173 sg:person.01152420166.90 schema:affiliation grid-institutes:grid.31501.36
    174 schema:familyName Lee
    175 schema:givenName Yun-Sang
    176 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01152420166.90
    177 rdf:type schema:Person
    178 sg:person.01301360400.94 schema:affiliation grid-institutes:grid.31501.36
    179 schema:familyName Jeong
    180 schema:givenName Jae Min
    181 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01301360400.94
    182 rdf:type schema:Person
    183 sg:person.01343511335.32 schema:affiliation grid-institutes:grid.31501.36
    184 schema:familyName Paeng
    185 schema:givenName Jin Chul
    186 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01343511335.32
    187 rdf:type schema:Person
    188 sg:person.015617314175.88 schema:affiliation grid-institutes:grid.31501.36
    189 schema:familyName Lee
    190 schema:givenName Dong Soo
    191 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015617314175.88
    192 rdf:type schema:Person
    193 sg:person.0670226111.41 schema:affiliation grid-institutes:grid.31501.36
    194 schema:familyName Kim
    195 schema:givenName Ki-Bong
    196 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0670226111.41
    197 rdf:type schema:Person
    198 sg:person.0677005044.62 schema:affiliation grid-institutes:grid.31501.36
    199 schema:familyName Lee
    200 schema:givenName Jae Sung
    201 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0677005044.62
    202 rdf:type schema:Person
    203 sg:person.0751347234.39 schema:affiliation grid-institutes:grid.31501.36
    204 schema:familyName Chung
    205 schema:givenName June-Key
    206 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0751347234.39
    207 rdf:type schema:Person
    208 sg:pub.10.1007/s00259-009-1220-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1044666902
    209 https://doi.org/10.1007/s00259-009-1220-z
    210 rdf:type schema:CreativeWork
    211 sg:pub.10.1038/nature06803 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029131166
    212 https://doi.org/10.1038/nature06803
    213 rdf:type schema:CreativeWork
    214 grid-institutes:grid.31501.36 schema:alternateName Department of Molecular Medicine and Biopharmaceutical Sciences, Seoul National University, Seoul, Korea
    215 Department of Nuclear Medicine, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, 110-744, Seoul, Korea
    216 Department of Thoracic and Cardiovascular Surgery, Seoul National University College of Medicine, Seoul, Korea
    217 schema:name Department of Molecular Medicine and Biopharmaceutical Sciences, Seoul National University, Seoul, Korea
    218 Department of Nuclear Medicine, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, 110-744, Seoul, Korea
    219 Department of Thoracic and Cardiovascular Surgery, Seoul National University College of Medicine, Seoul, Korea
    220 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...