Prognostic implication of extrarenal metabolic tumor burden in advanced renal cell carcinoma treated with targeted therapy after nephrectomy View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2013-07-02

AUTHORS

Hai-Jeon Yoon, Jin Chul Paeng, Cheol Kwak, Yong Hyun Park, Tae Min Kim, Se-Hoon Lee, June-Key Chung, E. Edmund Kim, Dong Soo Lee

ABSTRACT

ObjectiveIn the era of targeted therapy for advanced renal cell carcinoma (RCC), appropriate prognosis prediction is necessary for optimal therapy with or without cytoreductive surgery. We evaluated prognostic implication of extrarenal metabolic tumor burden in nephrectomized patients with advanced RCC.MethodsForty-four patients with advanced RCC who underwent 18F-fluorodeoxyglucose PET/CT were retrospectively enrolled. The patients were treated with nephrectomy and targeted therapy. On PET/CT image of each patient, maximal standardized uptake value (SUVmax) of lesions were measured, and metabolic tumor burden was measured as total lesion glycolysis (TLG) by multiplying tumor volume and mean SUV. An overall TLG was calculated as the sum of those of all lesions. The prognostic value of PET parameters (SUVmax and TLG), and established major clinical factors (serum hemoglobin and corrected calcium, and number of metastatic sites) were tested with regard to overall survival.ResultsAmong 44 patients, 8 died during mean follow-up time of 21.9 ± 17.7 months. On FDG PET/CT, a total of 250 lesions were analyzed. In univariate analyses, SUVmax, TLG, number of metastatic sites, serum hemoglobin and corrected calcium were significant prognostic factors. Among them, TLG remained as an independent prognostic factor in a multivariate analysis (P = 0.038). In subgroup analyses, TLG was still a significant prognostic factor in patients treated with sunitinib only and in patients on the first staging as well as restaging.ConclusionsExtrarenal metabolic tumor burden is a significant prognostic factor in advanced RCC patients treated with targeted therapy. In selection of candidates for cytoreductive surgery, the measurement of metabolic tumor burden may be effective. More... »

PAGES

748-755

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s12149-013-0742-4

DOI

http://dx.doi.org/10.1007/s12149-013-0742-4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1034292158

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/23818007


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Clinical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adult", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged, 80 and over", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Carcinoma, Renal Cell", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Fluorodeoxyglucose F18", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Kidney Neoplasms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Molecular Targeted Therapy", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Nephrectomy", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Positron-Emission Tomography", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Prognosis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Retrospective Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Survival Analysis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Tomography, X-Ray Computed", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Nuclear Medicine, Ewha Womans University School of Medicine, Seoul, Korea", 
          "id": "http://www.grid.ac/institutes/grid.255649.9", 
          "name": [
            "Department of Nuclear Medicine, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, 110-744, Seoul, Korea", 
            "Department of Nuclear Medicine, Ewha Womans University School of Medicine, Seoul, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yoon", 
        "givenName": "Hai-Jeon", 
        "id": "sg:person.01062451672.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01062451672.13"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Nuclear Medicine, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, 110-744, Seoul, Korea", 
          "id": "http://www.grid.ac/institutes/grid.31501.36", 
          "name": [
            "Department of Nuclear Medicine, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, 110-744, Seoul, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Paeng", 
        "givenName": "Jin Chul", 
        "id": "sg:person.01343511335.32", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01343511335.32"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Urology, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, 110-744, Seoul, Korea", 
          "id": "http://www.grid.ac/institutes/grid.31501.36", 
          "name": [
            "Department of Urology, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, 110-744, Seoul, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kwak", 
        "givenName": "Cheol", 
        "id": "sg:person.01305255674.64", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01305255674.64"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Urology, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, 110-744, Seoul, Korea", 
          "id": "http://www.grid.ac/institutes/grid.31501.36", 
          "name": [
            "Department of Urology, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, 110-744, Seoul, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Park", 
        "givenName": "Yong Hyun", 
        "id": "sg:person.01175315357.21", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01175315357.21"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea", 
          "id": "http://www.grid.ac/institutes/grid.31501.36", 
          "name": [
            "Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kim", 
        "givenName": "Tae Min", 
        "id": "sg:person.07366102241.87", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07366102241.87"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea", 
          "id": "http://www.grid.ac/institutes/grid.31501.36", 
          "name": [
            "Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lee", 
        "givenName": "Se-Hoon", 
        "id": "sg:person.0637045403.53", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0637045403.53"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Nuclear Medicine, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, 110-744, Seoul, Korea", 
          "id": "http://www.grid.ac/institutes/grid.31501.36", 
          "name": [
            "Department of Nuclear Medicine, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, 110-744, Seoul, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chung", 
        "givenName": "June-Key", 
        "id": "sg:person.0751347234.39", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0751347234.39"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Radiological Sciences, University of California, Irvine, CA, USA", 
          "id": "http://www.grid.ac/institutes/grid.266093.8", 
          "name": [
            "Department of Molecular Medicine and Biopharmaceutical Sciences, Seoul National University, Seoul, Korea", 
            "Department of Radiological Sciences, University of California, Irvine, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Edmund Kim", 
        "givenName": "E.", 
        "id": "sg:person.01012655343.57", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01012655343.57"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Molecular Medicine and Biopharmaceutical Sciences, Seoul National University, Seoul, Korea", 
          "id": "http://www.grid.ac/institutes/grid.31501.36", 
          "name": [
            "Department of Nuclear Medicine, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, 110-744, Seoul, Korea", 
            "Department of Molecular Medicine and Biopharmaceutical Sciences, Seoul National University, Seoul, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lee", 
        "givenName": "Dong Soo", 
        "id": "sg:person.015617314175.88", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015617314175.88"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/sj.bjc.6606061", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028148456", 
          "https://doi.org/10.1038/sj.bjc.6606061"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2407-10-667", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031120077", 
          "https://doi.org/10.1186/1471-2407-10-667"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12185-011-0822-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004034909", 
          "https://doi.org/10.1007/s12185-011-0822-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00345-011-0723-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029858158", 
          "https://doi.org/10.1007/s00345-011-0723-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12149-011-0478-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020485292", 
          "https://doi.org/10.1007/s12149-011-0478-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1245/s10434-010-1107-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007093307", 
          "https://doi.org/10.1245/s10434-010-1107-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11934-011-0225-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025136264", 
          "https://doi.org/10.1007/s11934-011-0225-x"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2013-07-02", 
    "datePublishedReg": "2013-07-02", 
    "description": "ObjectiveIn the era of targeted therapy for advanced renal cell carcinoma (RCC), appropriate prognosis prediction is necessary for optimal therapy with or without cytoreductive surgery. We evaluated prognostic implication of extrarenal metabolic tumor burden in nephrectomized patients with advanced RCC.MethodsForty-four patients with advanced RCC who underwent 18F-fluorodeoxyglucose PET/CT were retrospectively enrolled. The patients were treated with nephrectomy and targeted therapy. On PET/CT image of each patient, maximal standardized uptake value (SUVmax) of lesions were measured, and metabolic tumor burden was measured as total lesion glycolysis (TLG) by multiplying tumor volume and mean SUV. An overall TLG was calculated as the sum of those of all lesions. The prognostic value of PET parameters (SUVmax and TLG), and established major clinical factors (serum hemoglobin and corrected calcium, and number of metastatic sites) were tested with regard to overall survival.ResultsAmong 44 patients, 8 died during mean follow-up time of 21.9\u00a0\u00b1\u00a017.7\u00a0months. On FDG PET/CT, a total of 250 lesions were analyzed. In univariate analyses, SUVmax, TLG, number of metastatic sites, serum hemoglobin and corrected calcium were significant prognostic factors. Among them, TLG remained as an independent prognostic factor in a multivariate analysis (P\u00a0=\u00a00.038). In subgroup analyses, TLG was still a significant prognostic factor in patients treated with sunitinib only and in patients on the first staging as well as restaging.ConclusionsExtrarenal metabolic tumor burden is a significant prognostic factor in advanced RCC patients treated with targeted therapy. In selection of candidates for cytoreductive surgery, the measurement of metabolic tumor burden may be effective.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s12149-013-0742-4", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1099601", 
        "issn": [
          "0914-7187", 
          "1864-6433"
        ], 
        "name": "Annals of Nuclear Medicine", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "8", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "27"
      }
    ], 
    "keywords": [
      "advanced renal cell carcinoma", 
      "total lesion glycolysis", 
      "metabolic tumor burden", 
      "renal cell carcinoma", 
      "significant prognostic factors", 
      "tumor burden", 
      "prognostic factors", 
      "PET/CT", 
      "cytoreductive surgery", 
      "prognostic implications", 
      "cell carcinoma", 
      "maximal standardized uptake value", 
      "FDG PET/CT", 
      "advanced RCC patients", 
      "independent prognostic factor", 
      "MethodsForty-four patients", 
      "major clinical factors", 
      "standardized uptake value", 
      "PET/CT images", 
      "overall survival", 
      "serum hemoglobin", 
      "lesion glycolysis", 
      "clinical factors", 
      "optimal therapy", 
      "metastatic sites", 
      "prognostic value", 
      "RCC patients", 
      "nephrectomized patients", 
      "subgroup analysis", 
      "univariate analysis", 
      "tumor volume", 
      "PET parameters", 
      "mean SUV", 
      "patients", 
      "uptake value", 
      "prognosis prediction", 
      "multivariate analysis", 
      "therapy", 
      "selection of candidates", 
      "lesions", 
      "nephrectomy", 
      "surgery", 
      "burden", 
      "carcinoma", 
      "CT", 
      "CT images", 
      "factors", 
      "sunitinib", 
      "SUVmax", 
      "restaging", 
      "staging", 
      "months", 
      "hemoglobin", 
      "survival", 
      "total", 
      "SUV", 
      "ObjectiveIn", 
      "first staging", 
      "calcium", 
      "glycolysis", 
      "analysis", 
      "volume", 
      "implications", 
      "regard", 
      "candidates", 
      "values", 
      "sites", 
      "number", 
      "time", 
      "era", 
      "selection", 
      "measurements", 
      "parameters", 
      "images", 
      "sum", 
      "prediction"
    ], 
    "name": "Prognostic implication of extrarenal metabolic tumor burden in advanced renal cell carcinoma treated with targeted therapy after nephrectomy", 
    "pagination": "748-755", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1034292158"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s12149-013-0742-4"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "23818007"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s12149-013-0742-4", 
      "https://app.dimensions.ai/details/publication/pub.1034292158"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-10-01T06:38", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/article/article_598.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s12149-013-0742-4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12149-013-0742-4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12149-013-0742-4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12149-013-0742-4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12149-013-0742-4'


 

This table displays all metadata directly associated to this object as RDF triples.

303 TRIPLES      21 PREDICATES      125 URIs      110 LITERALS      24 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s12149-013-0742-4 schema:about N1341f9025605489d9a1bf8ef0e39f20f
2 N1c1e9c00ecb14c75a11c9d20fbeeaeb7
3 N23adf6fa48ac418e95f5fed2674f5a6c
4 N43f8d68606054c5795b9c1b2e303cc49
5 N4a41ad888b684b16afd35d7d93590d9e
6 N4b29ed8256144dcca860bc9120d7d164
7 N4d081d860e914abf8bda3e6d345d6b29
8 N69995569c69f40b3b31cfa3519dda409
9 N6d1d23ed3c7049cbb589b99b9afe28e8
10 N733f210f30574ad9a837de4239a419b3
11 N7cc79298507048df86fc2c0cfc35a850
12 N883f7640c29f4590ab4567a3aed6852c
13 Nab419bb8bad74fd9ae18414f5202098e
14 Nc98b65ca1cdc4f018c3a9c05842f212a
15 Nd4692ae0e7994b35b6a599957b4a8066
16 Ne044811152264639aa989d094fa895a5
17 Nf7c0a36db0214755914b7b633fd53b06
18 anzsrc-for:11
19 anzsrc-for:1103
20 schema:author Nc4de8a3b0d3d405d87b288bab64fb366
21 schema:citation sg:pub.10.1007/s00345-011-0723-y
22 sg:pub.10.1007/s11934-011-0225-x
23 sg:pub.10.1007/s12149-011-0478-y
24 sg:pub.10.1007/s12185-011-0822-y
25 sg:pub.10.1038/sj.bjc.6606061
26 sg:pub.10.1186/1471-2407-10-667
27 sg:pub.10.1245/s10434-010-1107-z
28 schema:datePublished 2013-07-02
29 schema:datePublishedReg 2013-07-02
30 schema:description ObjectiveIn the era of targeted therapy for advanced renal cell carcinoma (RCC), appropriate prognosis prediction is necessary for optimal therapy with or without cytoreductive surgery. We evaluated prognostic implication of extrarenal metabolic tumor burden in nephrectomized patients with advanced RCC.MethodsForty-four patients with advanced RCC who underwent 18F-fluorodeoxyglucose PET/CT were retrospectively enrolled. The patients were treated with nephrectomy and targeted therapy. On PET/CT image of each patient, maximal standardized uptake value (SUVmax) of lesions were measured, and metabolic tumor burden was measured as total lesion glycolysis (TLG) by multiplying tumor volume and mean SUV. An overall TLG was calculated as the sum of those of all lesions. The prognostic value of PET parameters (SUVmax and TLG), and established major clinical factors (serum hemoglobin and corrected calcium, and number of metastatic sites) were tested with regard to overall survival.ResultsAmong 44 patients, 8 died during mean follow-up time of 21.9 ± 17.7 months. On FDG PET/CT, a total of 250 lesions were analyzed. In univariate analyses, SUVmax, TLG, number of metastatic sites, serum hemoglobin and corrected calcium were significant prognostic factors. Among them, TLG remained as an independent prognostic factor in a multivariate analysis (P = 0.038). In subgroup analyses, TLG was still a significant prognostic factor in patients treated with sunitinib only and in patients on the first staging as well as restaging.ConclusionsExtrarenal metabolic tumor burden is a significant prognostic factor in advanced RCC patients treated with targeted therapy. In selection of candidates for cytoreductive surgery, the measurement of metabolic tumor burden may be effective.
31 schema:genre article
32 schema:isAccessibleForFree false
33 schema:isPartOf Ne2ca62e390344cdabe79394d23f07df5
34 Nfbd85a350d7147c490550343a7f21f6d
35 sg:journal.1099601
36 schema:keywords CT
37 CT images
38 FDG PET/CT
39 MethodsForty-four patients
40 ObjectiveIn
41 PET parameters
42 PET/CT
43 PET/CT images
44 RCC patients
45 SUV
46 SUVmax
47 advanced RCC patients
48 advanced renal cell carcinoma
49 analysis
50 burden
51 calcium
52 candidates
53 carcinoma
54 cell carcinoma
55 clinical factors
56 cytoreductive surgery
57 era
58 factors
59 first staging
60 glycolysis
61 hemoglobin
62 images
63 implications
64 independent prognostic factor
65 lesion glycolysis
66 lesions
67 major clinical factors
68 maximal standardized uptake value
69 mean SUV
70 measurements
71 metabolic tumor burden
72 metastatic sites
73 months
74 multivariate analysis
75 nephrectomized patients
76 nephrectomy
77 number
78 optimal therapy
79 overall survival
80 parameters
81 patients
82 prediction
83 prognosis prediction
84 prognostic factors
85 prognostic implications
86 prognostic value
87 regard
88 renal cell carcinoma
89 restaging
90 selection
91 selection of candidates
92 serum hemoglobin
93 significant prognostic factors
94 sites
95 staging
96 standardized uptake value
97 subgroup analysis
98 sum
99 sunitinib
100 surgery
101 survival
102 therapy
103 time
104 total
105 total lesion glycolysis
106 tumor burden
107 tumor volume
108 univariate analysis
109 uptake value
110 values
111 volume
112 schema:name Prognostic implication of extrarenal metabolic tumor burden in advanced renal cell carcinoma treated with targeted therapy after nephrectomy
113 schema:pagination 748-755
114 schema:productId N1fb293682b3d4d6d96df8314dc3146cd
115 N6012aa1ffe464462b1d99ef89aa2c0c1
116 Na3dc5b8c5a1b407d840b77b0e43cdbd4
117 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034292158
118 https://doi.org/10.1007/s12149-013-0742-4
119 schema:sdDatePublished 2022-10-01T06:38
120 schema:sdLicense https://scigraph.springernature.com/explorer/license/
121 schema:sdPublisher N956149b0c21248de9f48d7ddb2437673
122 schema:url https://doi.org/10.1007/s12149-013-0742-4
123 sgo:license sg:explorer/license/
124 sgo:sdDataset articles
125 rdf:type schema:ScholarlyArticle
126 N03bceb76c59846098a5e9913c3188264 rdf:first sg:person.01305255674.64
127 rdf:rest N59a8e05be7d24eedb71448a5e9cc7d13
128 N03e2c849506c4a3b91966455f8880d93 rdf:first sg:person.015617314175.88
129 rdf:rest rdf:nil
130 N0fce5e7df4934b29a936ec44b322e76d rdf:first sg:person.01012655343.57
131 rdf:rest N03e2c849506c4a3b91966455f8880d93
132 N1341f9025605489d9a1bf8ef0e39f20f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
133 schema:name Tomography, X-Ray Computed
134 rdf:type schema:DefinedTerm
135 N1c1e9c00ecb14c75a11c9d20fbeeaeb7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
136 schema:name Molecular Targeted Therapy
137 rdf:type schema:DefinedTerm
138 N1fb293682b3d4d6d96df8314dc3146cd schema:name pubmed_id
139 schema:value 23818007
140 rdf:type schema:PropertyValue
141 N23adf6fa48ac418e95f5fed2674f5a6c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
142 schema:name Aged
143 rdf:type schema:DefinedTerm
144 N43f8d68606054c5795b9c1b2e303cc49 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
145 schema:name Fluorodeoxyglucose F18
146 rdf:type schema:DefinedTerm
147 N474cd925f25f4ccf837e8c8f54bdc29d rdf:first sg:person.0751347234.39
148 rdf:rest N0fce5e7df4934b29a936ec44b322e76d
149 N4a41ad888b684b16afd35d7d93590d9e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
150 schema:name Survival Analysis
151 rdf:type schema:DefinedTerm
152 N4b29ed8256144dcca860bc9120d7d164 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
153 schema:name Male
154 rdf:type schema:DefinedTerm
155 N4d081d860e914abf8bda3e6d345d6b29 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
156 schema:name Prognosis
157 rdf:type schema:DefinedTerm
158 N59a8e05be7d24eedb71448a5e9cc7d13 rdf:first sg:person.01175315357.21
159 rdf:rest Nf03626cb25c24872aca52b18aeca136c
160 N6012aa1ffe464462b1d99ef89aa2c0c1 schema:name dimensions_id
161 schema:value pub.1034292158
162 rdf:type schema:PropertyValue
163 N69995569c69f40b3b31cfa3519dda409 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
164 schema:name Aged, 80 and over
165 rdf:type schema:DefinedTerm
166 N6d1d23ed3c7049cbb589b99b9afe28e8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
167 schema:name Female
168 rdf:type schema:DefinedTerm
169 N733f210f30574ad9a837de4239a419b3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
170 schema:name Kidney Neoplasms
171 rdf:type schema:DefinedTerm
172 N7cc79298507048df86fc2c0cfc35a850 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
173 schema:name Humans
174 rdf:type schema:DefinedTerm
175 N883f7640c29f4590ab4567a3aed6852c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
176 schema:name Positron-Emission Tomography
177 rdf:type schema:DefinedTerm
178 N956149b0c21248de9f48d7ddb2437673 schema:name Springer Nature - SN SciGraph project
179 rdf:type schema:Organization
180 Na3dc5b8c5a1b407d840b77b0e43cdbd4 schema:name doi
181 schema:value 10.1007/s12149-013-0742-4
182 rdf:type schema:PropertyValue
183 Nab419bb8bad74fd9ae18414f5202098e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
184 schema:name Nephrectomy
185 rdf:type schema:DefinedTerm
186 Nb832a4935abb49328a930f78931fd966 rdf:first sg:person.0637045403.53
187 rdf:rest N474cd925f25f4ccf837e8c8f54bdc29d
188 Nc4de8a3b0d3d405d87b288bab64fb366 rdf:first sg:person.01062451672.13
189 rdf:rest Nec0f1e5cf1a44bfdb8a4595a90937c6f
190 Nc98b65ca1cdc4f018c3a9c05842f212a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
191 schema:name Retrospective Studies
192 rdf:type schema:DefinedTerm
193 Nd4692ae0e7994b35b6a599957b4a8066 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
194 schema:name Carcinoma, Renal Cell
195 rdf:type schema:DefinedTerm
196 Ne044811152264639aa989d094fa895a5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
197 schema:name Middle Aged
198 rdf:type schema:DefinedTerm
199 Ne2ca62e390344cdabe79394d23f07df5 schema:volumeNumber 27
200 rdf:type schema:PublicationVolume
201 Nec0f1e5cf1a44bfdb8a4595a90937c6f rdf:first sg:person.01343511335.32
202 rdf:rest N03bceb76c59846098a5e9913c3188264
203 Nf03626cb25c24872aca52b18aeca136c rdf:first sg:person.07366102241.87
204 rdf:rest Nb832a4935abb49328a930f78931fd966
205 Nf7c0a36db0214755914b7b633fd53b06 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
206 schema:name Adult
207 rdf:type schema:DefinedTerm
208 Nfbd85a350d7147c490550343a7f21f6d schema:issueNumber 8
209 rdf:type schema:PublicationIssue
210 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
211 schema:name Medical and Health Sciences
212 rdf:type schema:DefinedTerm
213 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
214 schema:name Clinical Sciences
215 rdf:type schema:DefinedTerm
216 sg:journal.1099601 schema:issn 0914-7187
217 1864-6433
218 schema:name Annals of Nuclear Medicine
219 schema:publisher Springer Nature
220 rdf:type schema:Periodical
221 sg:person.01012655343.57 schema:affiliation grid-institutes:grid.266093.8
222 schema:familyName Edmund Kim
223 schema:givenName E.
224 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01012655343.57
225 rdf:type schema:Person
226 sg:person.01062451672.13 schema:affiliation grid-institutes:grid.255649.9
227 schema:familyName Yoon
228 schema:givenName Hai-Jeon
229 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01062451672.13
230 rdf:type schema:Person
231 sg:person.01175315357.21 schema:affiliation grid-institutes:grid.31501.36
232 schema:familyName Park
233 schema:givenName Yong Hyun
234 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01175315357.21
235 rdf:type schema:Person
236 sg:person.01305255674.64 schema:affiliation grid-institutes:grid.31501.36
237 schema:familyName Kwak
238 schema:givenName Cheol
239 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01305255674.64
240 rdf:type schema:Person
241 sg:person.01343511335.32 schema:affiliation grid-institutes:grid.31501.36
242 schema:familyName Paeng
243 schema:givenName Jin Chul
244 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01343511335.32
245 rdf:type schema:Person
246 sg:person.015617314175.88 schema:affiliation grid-institutes:grid.31501.36
247 schema:familyName Lee
248 schema:givenName Dong Soo
249 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015617314175.88
250 rdf:type schema:Person
251 sg:person.0637045403.53 schema:affiliation grid-institutes:grid.31501.36
252 schema:familyName Lee
253 schema:givenName Se-Hoon
254 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0637045403.53
255 rdf:type schema:Person
256 sg:person.07366102241.87 schema:affiliation grid-institutes:grid.31501.36
257 schema:familyName Kim
258 schema:givenName Tae Min
259 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07366102241.87
260 rdf:type schema:Person
261 sg:person.0751347234.39 schema:affiliation grid-institutes:grid.31501.36
262 schema:familyName Chung
263 schema:givenName June-Key
264 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0751347234.39
265 rdf:type schema:Person
266 sg:pub.10.1007/s00345-011-0723-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1029858158
267 https://doi.org/10.1007/s00345-011-0723-y
268 rdf:type schema:CreativeWork
269 sg:pub.10.1007/s11934-011-0225-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1025136264
270 https://doi.org/10.1007/s11934-011-0225-x
271 rdf:type schema:CreativeWork
272 sg:pub.10.1007/s12149-011-0478-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1020485292
273 https://doi.org/10.1007/s12149-011-0478-y
274 rdf:type schema:CreativeWork
275 sg:pub.10.1007/s12185-011-0822-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1004034909
276 https://doi.org/10.1007/s12185-011-0822-y
277 rdf:type schema:CreativeWork
278 sg:pub.10.1038/sj.bjc.6606061 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028148456
279 https://doi.org/10.1038/sj.bjc.6606061
280 rdf:type schema:CreativeWork
281 sg:pub.10.1186/1471-2407-10-667 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031120077
282 https://doi.org/10.1186/1471-2407-10-667
283 rdf:type schema:CreativeWork
284 sg:pub.10.1245/s10434-010-1107-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1007093307
285 https://doi.org/10.1245/s10434-010-1107-z
286 rdf:type schema:CreativeWork
287 grid-institutes:grid.255649.9 schema:alternateName Department of Nuclear Medicine, Ewha Womans University School of Medicine, Seoul, Korea
288 schema:name Department of Nuclear Medicine, Ewha Womans University School of Medicine, Seoul, Korea
289 Department of Nuclear Medicine, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, 110-744, Seoul, Korea
290 rdf:type schema:Organization
291 grid-institutes:grid.266093.8 schema:alternateName Department of Radiological Sciences, University of California, Irvine, CA, USA
292 schema:name Department of Molecular Medicine and Biopharmaceutical Sciences, Seoul National University, Seoul, Korea
293 Department of Radiological Sciences, University of California, Irvine, CA, USA
294 rdf:type schema:Organization
295 grid-institutes:grid.31501.36 schema:alternateName Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
296 Department of Molecular Medicine and Biopharmaceutical Sciences, Seoul National University, Seoul, Korea
297 Department of Nuclear Medicine, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, 110-744, Seoul, Korea
298 Department of Urology, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, 110-744, Seoul, Korea
299 schema:name Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
300 Department of Molecular Medicine and Biopharmaceutical Sciences, Seoul National University, Seoul, Korea
301 Department of Nuclear Medicine, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, 110-744, Seoul, Korea
302 Department of Urology, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, 110-744, Seoul, Korea
303 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...