Attenuation correction of myocardial SPECT by scatter-photopeak window method in normal subjects View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2009-07

AUTHORS

Koichi Okuda, Kenichi Nakajima, Nobutoku Motomura, Masahiro Kubota, Noriyasu Yamaki, Hisato Maeda, Shinro Matsuo, Seigo Kinuya

ABSTRACT

OBJECTIVE: Segmentation with scatter and photopeak window data using attenuation correction (SSPAC) method can provide a patient-specific non-uniform attenuation coefficient map only by using photopeak and scatter images without X-ray computed tomography (CT). The purpose of this study is to evaluate the performance of attenuation correction (AC) by the SSPAC method on normal myocardial perfusion database. METHODS: A total of 32 sets of exercise-rest myocardial images with Tc-99 m-sestamibi were acquired in both photopeak (140 keV +/- 10%) and scatter (7% of lower side of the photopeak window) energy windows. Myocardial perfusion databases by the SSPAC method and non-AC (NC) were created from 15 female and 17 male subjects with low likelihood of cardiac disease using quantitative perfusion SPECT software. Segmental myocardial counts of a 17-segment model from these databases were compared on the basis of paired t test. RESULTS: AC average myocardial perfusion count was significantly higher than that in NC in the septal and inferior regions (P < 0.02). On the contrary, AC average count was significantly lower in the anterolateral and apical regions (P < 0.01). Coefficient variation of the AC count in the mid, apical and apex regions was lower than that of NC. CONCLUSIONS: The SSPAC method can improve average myocardial perfusion uptake in the septal and inferior regions and provide uniform distribution of myocardial perfusion. The SSPAC method could be a practical method of attenuation correction without X-ray CT. More... »

PAGES

501-506

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s12149-009-0258-0

DOI

http://dx.doi.org/10.1007/s12149-009-0258-0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1012331949

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/19412655


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Clinical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adult", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged, 80 and over", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Analysis of Variance", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Databases, Factual", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Image Processing, Computer-Assisted", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Myocardial Perfusion Imaging", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sex Factors", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Tomography, Emission-Computed, Single-Photon", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Ventricular Function, Left", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Kanazawa University", 
          "id": "https://www.grid.ac/institutes/grid.9707.9", 
          "name": [
            "Department of Nuclear Medicine, Kanazawa University Hospital, Kanazawa, Japan", 
            "Department of Biotracer Medicine, Kanazawa University Graduate School of Medical Science, 13-1 Takara-machi, 920-8641, Kanazawa, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Okuda", 
        "givenName": "Koichi", 
        "id": "sg:person.01273753246.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01273753246.34"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Kanazawa University Hospital", 
          "id": "https://www.grid.ac/institutes/grid.412002.5", 
          "name": [
            "Department of Nuclear Medicine, Kanazawa University Hospital, Kanazawa, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nakajima", 
        "givenName": "Kenichi", 
        "id": "sg:person.014366212412.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014366212412.16"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Toshiba Medical Systems Co., Ltd, Tochigi, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Motomura", 
        "givenName": "Nobutoku", 
        "id": "sg:person.01220743635.25", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01220743635.25"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Toshiba Medical Systems Co., Ltd, Tochigi, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kubota", 
        "givenName": "Masahiro", 
        "id": "sg:person.0666131363.79", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0666131363.79"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Fujita Health University", 
          "id": "https://www.grid.ac/institutes/grid.256115.4", 
          "name": [
            "Fujita Health University of Health Sciences, Toyoake, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yamaki", 
        "givenName": "Noriyasu", 
        "id": "sg:person.0773414036.26", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0773414036.26"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Fujita Health University", 
          "id": "https://www.grid.ac/institutes/grid.256115.4", 
          "name": [
            "Fujita Health University of Health Sciences, Toyoake, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Maeda", 
        "givenName": "Hisato", 
        "id": "sg:person.01116521332.50", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01116521332.50"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Kanazawa University Hospital", 
          "id": "https://www.grid.ac/institutes/grid.412002.5", 
          "name": [
            "Department of Nuclear Medicine, Kanazawa University Hospital, Kanazawa, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Matsuo", 
        "givenName": "Shinro", 
        "id": "sg:person.01206070466.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01206070466.49"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Kanazawa University Hospital", 
          "id": "https://www.grid.ac/institutes/grid.412002.5", 
          "name": [
            "Department of Nuclear Medicine, Kanazawa University Hospital, Kanazawa, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kinuya", 
        "givenName": "Seigo", 
        "id": "sg:person.0620177742.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0620177742.17"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.2967/jnmt.107.046839", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004096367"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1016/j.nuclcard.2004.02.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007739224", 
          "https://doi.org/10.1016/j.nuclcard.2004.02.007"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2967/jnumed.107.049387", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011717632"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12149-007-0059-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017307682", 
          "https://doi.org/10.1007/s12149-007-0059-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02985576", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019984229", 
          "https://doi.org/10.1007/bf02985576"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02985576", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019984229", 
          "https://doi.org/10.1007/bf02985576"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1016/j.nuclcard.2003.10.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020231201", 
          "https://doi.org/10.1016/j.nuclcard.2003.10.004"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/mnm.0b013e3282f28409", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029934744"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/mnm.0b013e3282f28409", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029934744"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/mnm.0b013e3282f4a22e", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030157356"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/mnm.0b013e3282f4a22e", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030157356"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/01.cir.99.21.2742", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030707367"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2967/jnumed.107.040535", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030993369"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1016/j.nuclcard.2004.12.298", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031357124", 
          "https://doi.org/10.1016/j.nuclcard.2004.12.298"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1016/j.nuclcard.2003.12.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036332917", 
          "https://doi.org/10.1016/j.nuclcard.2003.12.001"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1016/j.nuclcard.2003.12.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036332917", 
          "https://doi.org/10.1016/j.nuclcard.2003.12.001"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/01.cir.93.3.463", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063336952"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1076948426", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2009-07", 
    "datePublishedReg": "2009-07-01", 
    "description": "OBJECTIVE: Segmentation with scatter and photopeak window data using attenuation correction (SSPAC) method can provide a patient-specific non-uniform attenuation coefficient map only by using photopeak and scatter images without X-ray computed tomography (CT). The purpose of this study is to evaluate the performance of attenuation correction (AC) by the SSPAC method on normal myocardial perfusion database.\nMETHODS: A total of 32 sets of exercise-rest myocardial images with Tc-99 m-sestamibi were acquired in both photopeak (140 keV +/- 10%) and scatter (7% of lower side of the photopeak window) energy windows. Myocardial perfusion databases by the SSPAC method and non-AC (NC) were created from 15 female and 17 male subjects with low likelihood of cardiac disease using quantitative perfusion SPECT software. Segmental myocardial counts of a 17-segment model from these databases were compared on the basis of paired t test.\nRESULTS: AC average myocardial perfusion count was significantly higher than that in NC in the septal and inferior regions (P < 0.02). On the contrary, AC average count was significantly lower in the anterolateral and apical regions (P < 0.01). Coefficient variation of the AC count in the mid, apical and apex regions was lower than that of NC.\nCONCLUSIONS: The SSPAC method can improve average myocardial perfusion uptake in the septal and inferior regions and provide uniform distribution of myocardial perfusion. The SSPAC method could be a practical method of attenuation correction without X-ray CT.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s12149-009-0258-0", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.5982584", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1099601", 
        "issn": [
          "0914-7187", 
          "1864-6433"
        ], 
        "name": "Annals of Nuclear Medicine", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "23"
      }
    ], 
    "name": "Attenuation correction of myocardial SPECT by scatter-photopeak window method in normal subjects", 
    "pagination": "501-506", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "3ac0d8b5808cef7d0e4cf7ad3a7dd2c3c8887f5e348fc445ba9d787c67589b68"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "19412655"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "8913398"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s12149-009-0258-0"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1012331949"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s12149-009-0258-0", 
      "https://app.dimensions.ai/details/publication/pub.1012331949"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T09:12", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000338_0000000338/records_47989_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs12149-009-0258-0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12149-009-0258-0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12149-009-0258-0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12149-009-0258-0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12149-009-0258-0'


 

This table displays all metadata directly associated to this object as RDF triples.

234 TRIPLES      21 PREDICATES      57 URIs      35 LITERALS      23 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s12149-009-0258-0 schema:about N0068721b02bb41cbb73071fb8d710ffe
2 N3124d662bee34fc1bb290feebb68ac7f
3 N3c1bb3ba9d1548738849aed07550b791
4 N3d3608141c5f4804b8f57a600fccc112
5 N5ad0d792bff34985bf131bb995e7e8ea
6 N5c73e78cc823426ea004eec28893c10d
7 N9b41af24bad5424e8d7426756a6003b0
8 Na56eee75b24744829d8b573afdf07960
9 Na7bfed588743453cb3eefb4d91804dee
10 Naef3f9b179ad48889007fbe94d4e0cbf
11 Nd0311f448c5c443e86ea563818bc4dfa
12 Nea381a5307524e3a9b5151bd6168800b
13 Nea3db5bac4514b9986ae23e4e960256d
14 Nf8a23db7caaa4c5abe3c000424dc79c7
15 anzsrc-for:11
16 anzsrc-for:1103
17 schema:author Nb7ef66ee24bc4a6685db51ee3d0fec8a
18 schema:citation sg:pub.10.1007/bf02985576
19 sg:pub.10.1007/s12149-007-0059-2
20 sg:pub.10.1016/j.nuclcard.2003.10.004
21 sg:pub.10.1016/j.nuclcard.2003.12.001
22 sg:pub.10.1016/j.nuclcard.2004.02.007
23 sg:pub.10.1016/j.nuclcard.2004.12.298
24 https://app.dimensions.ai/details/publication/pub.1076948426
25 https://doi.org/10.1097/mnm.0b013e3282f28409
26 https://doi.org/10.1097/mnm.0b013e3282f4a22e
27 https://doi.org/10.1161/01.cir.93.3.463
28 https://doi.org/10.1161/01.cir.99.21.2742
29 https://doi.org/10.2967/jnmt.107.046839
30 https://doi.org/10.2967/jnumed.107.040535
31 https://doi.org/10.2967/jnumed.107.049387
32 schema:datePublished 2009-07
33 schema:datePublishedReg 2009-07-01
34 schema:description OBJECTIVE: Segmentation with scatter and photopeak window data using attenuation correction (SSPAC) method can provide a patient-specific non-uniform attenuation coefficient map only by using photopeak and scatter images without X-ray computed tomography (CT). The purpose of this study is to evaluate the performance of attenuation correction (AC) by the SSPAC method on normal myocardial perfusion database. METHODS: A total of 32 sets of exercise-rest myocardial images with Tc-99 m-sestamibi were acquired in both photopeak (140 keV +/- 10%) and scatter (7% of lower side of the photopeak window) energy windows. Myocardial perfusion databases by the SSPAC method and non-AC (NC) were created from 15 female and 17 male subjects with low likelihood of cardiac disease using quantitative perfusion SPECT software. Segmental myocardial counts of a 17-segment model from these databases were compared on the basis of paired t test. RESULTS: AC average myocardial perfusion count was significantly higher than that in NC in the septal and inferior regions (P < 0.02). On the contrary, AC average count was significantly lower in the anterolateral and apical regions (P < 0.01). Coefficient variation of the AC count in the mid, apical and apex regions was lower than that of NC. CONCLUSIONS: The SSPAC method can improve average myocardial perfusion uptake in the septal and inferior regions and provide uniform distribution of myocardial perfusion. The SSPAC method could be a practical method of attenuation correction without X-ray CT.
35 schema:genre research_article
36 schema:inLanguage en
37 schema:isAccessibleForFree true
38 schema:isPartOf N118d7c5c46b9412284ed1f4c5bf8ef66
39 N54ab61d724204761b8fa45b04a1703f6
40 sg:journal.1099601
41 schema:name Attenuation correction of myocardial SPECT by scatter-photopeak window method in normal subjects
42 schema:pagination 501-506
43 schema:productId N36532b5b306d46c8bd76651355b5f749
44 N6aa6864f220845a79b882eb3b27ec223
45 N7ec6c7369ac043d6939faa2148945083
46 Na540f473849843d783934698be7448a2
47 Nc2c6f34709884cdab2f8b61c3f258051
48 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012331949
49 https://doi.org/10.1007/s12149-009-0258-0
50 schema:sdDatePublished 2019-04-11T09:12
51 schema:sdLicense https://scigraph.springernature.com/explorer/license/
52 schema:sdPublisher N6a0f8a8cc5164d5b92fe8ea2f54d4f95
53 schema:url http://link.springer.com/10.1007%2Fs12149-009-0258-0
54 sgo:license sg:explorer/license/
55 sgo:sdDataset articles
56 rdf:type schema:ScholarlyArticle
57 N0068721b02bb41cbb73071fb8d710ffe schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
58 schema:name Middle Aged
59 rdf:type schema:DefinedTerm
60 N0d679a661f0c46e28915b5975eb9fd91 rdf:first sg:person.0620177742.17
61 rdf:rest rdf:nil
62 N118d7c5c46b9412284ed1f4c5bf8ef66 schema:issueNumber 5
63 rdf:type schema:PublicationIssue
64 N291363d60a9b4e348865428f6efb3c53 rdf:first sg:person.014366212412.16
65 rdf:rest N8b5bfc57f5734d79bae11ce9e65f5f4e
66 N3124d662bee34fc1bb290feebb68ac7f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
67 schema:name Adult
68 rdf:type schema:DefinedTerm
69 N36532b5b306d46c8bd76651355b5f749 schema:name nlm_unique_id
70 schema:value 8913398
71 rdf:type schema:PropertyValue
72 N3c1bb3ba9d1548738849aed07550b791 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
73 schema:name Aged
74 rdf:type schema:DefinedTerm
75 N3d3608141c5f4804b8f57a600fccc112 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
76 schema:name Sex Factors
77 rdf:type schema:DefinedTerm
78 N49692ea541e946bb811148edc7709842 schema:name Toshiba Medical Systems Co., Ltd, Tochigi, Japan
79 rdf:type schema:Organization
80 N54ab61d724204761b8fa45b04a1703f6 schema:volumeNumber 23
81 rdf:type schema:PublicationVolume
82 N5ad0d792bff34985bf131bb995e7e8ea schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
83 schema:name Female
84 rdf:type schema:DefinedTerm
85 N5c73e78cc823426ea004eec28893c10d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
86 schema:name Analysis of Variance
87 rdf:type schema:DefinedTerm
88 N65f22b98c9594033b1b95176dfe8c071 rdf:first sg:person.01116521332.50
89 rdf:rest Nd968aeccdbe442e1ab5f26ebc35b7307
90 N6a0f8a8cc5164d5b92fe8ea2f54d4f95 schema:name Springer Nature - SN SciGraph project
91 rdf:type schema:Organization
92 N6aa6864f220845a79b882eb3b27ec223 schema:name doi
93 schema:value 10.1007/s12149-009-0258-0
94 rdf:type schema:PropertyValue
95 N7ec6c7369ac043d6939faa2148945083 schema:name dimensions_id
96 schema:value pub.1012331949
97 rdf:type schema:PropertyValue
98 N8592b539c62c41d59f91322cddcc7f5a rdf:first sg:person.0773414036.26
99 rdf:rest N65f22b98c9594033b1b95176dfe8c071
100 N89ede843555b49349150a00674811684 rdf:first sg:person.0666131363.79
101 rdf:rest N8592b539c62c41d59f91322cddcc7f5a
102 N8b5bfc57f5734d79bae11ce9e65f5f4e rdf:first sg:person.01220743635.25
103 rdf:rest N89ede843555b49349150a00674811684
104 N9b41af24bad5424e8d7426756a6003b0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
105 schema:name Humans
106 rdf:type schema:DefinedTerm
107 Na540f473849843d783934698be7448a2 schema:name pubmed_id
108 schema:value 19412655
109 rdf:type schema:PropertyValue
110 Na56eee75b24744829d8b573afdf07960 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
111 schema:name Male
112 rdf:type schema:DefinedTerm
113 Na7bfed588743453cb3eefb4d91804dee schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
114 schema:name Tomography, Emission-Computed, Single-Photon
115 rdf:type schema:DefinedTerm
116 Naef3f9b179ad48889007fbe94d4e0cbf schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
117 schema:name Ventricular Function, Left
118 rdf:type schema:DefinedTerm
119 Nb7ef66ee24bc4a6685db51ee3d0fec8a rdf:first sg:person.01273753246.34
120 rdf:rest N291363d60a9b4e348865428f6efb3c53
121 Nc2c6f34709884cdab2f8b61c3f258051 schema:name readcube_id
122 schema:value 3ac0d8b5808cef7d0e4cf7ad3a7dd2c3c8887f5e348fc445ba9d787c67589b68
123 rdf:type schema:PropertyValue
124 Nd0311f448c5c443e86ea563818bc4dfa schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
125 schema:name Image Processing, Computer-Assisted
126 rdf:type schema:DefinedTerm
127 Nd968aeccdbe442e1ab5f26ebc35b7307 rdf:first sg:person.01206070466.49
128 rdf:rest N0d679a661f0c46e28915b5975eb9fd91
129 Nea381a5307524e3a9b5151bd6168800b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
130 schema:name Databases, Factual
131 rdf:type schema:DefinedTerm
132 Nea3db5bac4514b9986ae23e4e960256d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
133 schema:name Aged, 80 and over
134 rdf:type schema:DefinedTerm
135 Nf8a23db7caaa4c5abe3c000424dc79c7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
136 schema:name Myocardial Perfusion Imaging
137 rdf:type schema:DefinedTerm
138 Nfb1c34aa75ea41eb953aaba07a77c509 schema:name Toshiba Medical Systems Co., Ltd, Tochigi, Japan
139 rdf:type schema:Organization
140 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
141 schema:name Medical and Health Sciences
142 rdf:type schema:DefinedTerm
143 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
144 schema:name Clinical Sciences
145 rdf:type schema:DefinedTerm
146 sg:grant.5982584 http://pending.schema.org/fundedItem sg:pub.10.1007/s12149-009-0258-0
147 rdf:type schema:MonetaryGrant
148 sg:journal.1099601 schema:issn 0914-7187
149 1864-6433
150 schema:name Annals of Nuclear Medicine
151 rdf:type schema:Periodical
152 sg:person.01116521332.50 schema:affiliation https://www.grid.ac/institutes/grid.256115.4
153 schema:familyName Maeda
154 schema:givenName Hisato
155 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01116521332.50
156 rdf:type schema:Person
157 sg:person.01206070466.49 schema:affiliation https://www.grid.ac/institutes/grid.412002.5
158 schema:familyName Matsuo
159 schema:givenName Shinro
160 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01206070466.49
161 rdf:type schema:Person
162 sg:person.01220743635.25 schema:affiliation Nfb1c34aa75ea41eb953aaba07a77c509
163 schema:familyName Motomura
164 schema:givenName Nobutoku
165 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01220743635.25
166 rdf:type schema:Person
167 sg:person.01273753246.34 schema:affiliation https://www.grid.ac/institutes/grid.9707.9
168 schema:familyName Okuda
169 schema:givenName Koichi
170 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01273753246.34
171 rdf:type schema:Person
172 sg:person.014366212412.16 schema:affiliation https://www.grid.ac/institutes/grid.412002.5
173 schema:familyName Nakajima
174 schema:givenName Kenichi
175 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014366212412.16
176 rdf:type schema:Person
177 sg:person.0620177742.17 schema:affiliation https://www.grid.ac/institutes/grid.412002.5
178 schema:familyName Kinuya
179 schema:givenName Seigo
180 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0620177742.17
181 rdf:type schema:Person
182 sg:person.0666131363.79 schema:affiliation N49692ea541e946bb811148edc7709842
183 schema:familyName Kubota
184 schema:givenName Masahiro
185 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0666131363.79
186 rdf:type schema:Person
187 sg:person.0773414036.26 schema:affiliation https://www.grid.ac/institutes/grid.256115.4
188 schema:familyName Yamaki
189 schema:givenName Noriyasu
190 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0773414036.26
191 rdf:type schema:Person
192 sg:pub.10.1007/bf02985576 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019984229
193 https://doi.org/10.1007/bf02985576
194 rdf:type schema:CreativeWork
195 sg:pub.10.1007/s12149-007-0059-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017307682
196 https://doi.org/10.1007/s12149-007-0059-2
197 rdf:type schema:CreativeWork
198 sg:pub.10.1016/j.nuclcard.2003.10.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020231201
199 https://doi.org/10.1016/j.nuclcard.2003.10.004
200 rdf:type schema:CreativeWork
201 sg:pub.10.1016/j.nuclcard.2003.12.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036332917
202 https://doi.org/10.1016/j.nuclcard.2003.12.001
203 rdf:type schema:CreativeWork
204 sg:pub.10.1016/j.nuclcard.2004.02.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007739224
205 https://doi.org/10.1016/j.nuclcard.2004.02.007
206 rdf:type schema:CreativeWork
207 sg:pub.10.1016/j.nuclcard.2004.12.298 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031357124
208 https://doi.org/10.1016/j.nuclcard.2004.12.298
209 rdf:type schema:CreativeWork
210 https://app.dimensions.ai/details/publication/pub.1076948426 schema:CreativeWork
211 https://doi.org/10.1097/mnm.0b013e3282f28409 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029934744
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1097/mnm.0b013e3282f4a22e schema:sameAs https://app.dimensions.ai/details/publication/pub.1030157356
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1161/01.cir.93.3.463 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063336952
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1161/01.cir.99.21.2742 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030707367
218 rdf:type schema:CreativeWork
219 https://doi.org/10.2967/jnmt.107.046839 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004096367
220 rdf:type schema:CreativeWork
221 https://doi.org/10.2967/jnumed.107.040535 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030993369
222 rdf:type schema:CreativeWork
223 https://doi.org/10.2967/jnumed.107.049387 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011717632
224 rdf:type schema:CreativeWork
225 https://www.grid.ac/institutes/grid.256115.4 schema:alternateName Fujita Health University
226 schema:name Fujita Health University of Health Sciences, Toyoake, Japan
227 rdf:type schema:Organization
228 https://www.grid.ac/institutes/grid.412002.5 schema:alternateName Kanazawa University Hospital
229 schema:name Department of Nuclear Medicine, Kanazawa University Hospital, Kanazawa, Japan
230 rdf:type schema:Organization
231 https://www.grid.ac/institutes/grid.9707.9 schema:alternateName Kanazawa University
232 schema:name Department of Biotracer Medicine, Kanazawa University Graduate School of Medical Science, 13-1 Takara-machi, 920-8641, Kanazawa, Japan
233 Department of Nuclear Medicine, Kanazawa University Hospital, Kanazawa, Japan
234 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...