A recovery coefficient method for partial volume correction of PET images View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2009-06

AUTHORS

Shyam M. Srinivas, Thiruvenkatasamy Dhurairaj, Sandip Basu, Gonca Bural, Suleman Surti, Abass Alavi

ABSTRACT

OBJECTIVES: Correction of the "partial volume effect" has been an area of great interest in the recent times in quantitative PET imaging and has been mainly studied with count recovery models based upon phantoms that incorporate hot spheres in a cold background. The goal of this research study was to establish a similar model that is closer to a biological imaging environment, namely hot spheres/lesions in a warm background and to apply this model in a small cohort of patients. METHODS: A NEMA phantom with six spheres (diameters 1-3.7 cm) was filled with (18)FDG to give sphere:background activity ratios of 8:1, 6:1, and 4:1 for three different acquisitions on a Philips Allegro scanner. The hot sphere SUVmax and the background average SUV were measured for calculation of recovery coefficients (RCs). Using the RCs, the lesion diameters, and the lesion:background ratio, the SUVmax of 64 lesions from 17 patients with biopsy proven lung cancer were corrected. RESULTS: The RCs versus sphere diameters produced characteristic logarithmic curves for each phantom (RCs ranged from 80% to 11%). From a cohort of 17 patients with biopsy proven lung cancer, 64 lesions combined had a mean SUVmax of 7.0 and size of 2.5 cm. After partial volume correction of the SUVmax of each lesion, the average SUVmax increased to 15.5. CONCLUSIONS: Hot spheres in a warm background more closely resemble the actual imaging situation in a living subject when compared to hot spheres in a cold background. This method could facilitate generation of equipment specific recovery coefficients for partial volume correction. The clinical implications for the increased accuracy in SUV determination are certainly of potential value in oncologic imaging. More... »

PAGES

341-348

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s12149-009-0241-9

DOI

http://dx.doi.org/10.1007/s12149-009-0241-9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1016058825

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/19367446


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1112", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Oncology and Carcinogenesis", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Biopsy", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Image Interpretation, Computer-Assisted", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Image Processing, Computer-Assisted", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Lung Neoplasms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Biological", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Phantoms, Imaging", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Positron-Emission Tomography", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Temperature", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Cleveland Clinic", 
          "id": "https://www.grid.ac/institutes/grid.239578.2", 
          "name": [
            "Department of Nuclear Medicine, Cleveland Clinic, Cleveland, OH, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Srinivas", 
        "givenName": "Shyam M.", 
        "id": "sg:person.01265405632.24", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01265405632.24"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Minnesota", 
          "id": "https://www.grid.ac/institutes/grid.17635.36", 
          "name": [
            "Department of Radiology, University of Minnesota, Minneapolis, MN, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dhurairaj", 
        "givenName": "Thiruvenkatasamy", 
        "id": "sg:person.0610114732.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0610114732.28"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Bhabha Atomic Research Centre", 
          "id": "https://www.grid.ac/institutes/grid.418304.a", 
          "name": [
            "Division of Nuclear Medicine, Department of Radiology, Hospital of University of Pennsylvania, 3400 Spruce Street, 19104, Philadelphia, PA, USA", 
            "Radiation Medicine Centre (BARC) Tata Memorial Hospital Annexe, Parel, Bombay, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Basu", 
        "givenName": "Sandip", 
        "id": "sg:person.01042154521.46", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01042154521.46"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Brigham and Women's Hospital", 
          "id": "https://www.grid.ac/institutes/grid.62560.37", 
          "name": [
            "Department of Radiology, Brigham & Women\u2019s Hospital, Boston, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bural", 
        "givenName": "Gonca", 
        "id": "sg:person.0627642427.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0627642427.43"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hospital of the University of Pennsylvania", 
          "id": "https://www.grid.ac/institutes/grid.411115.1", 
          "name": [
            "Division of Nuclear Medicine, Department of Radiology, Hospital of University of Pennsylvania, 3400 Spruce Street, 19104, Philadelphia, PA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Surti", 
        "givenName": "Suleman", 
        "id": "sg:person.01053503413.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01053503413.15"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hospital of the University of Pennsylvania", 
          "id": "https://www.grid.ac/institutes/grid.411115.1", 
          "name": [
            "Division of Nuclear Medicine, Department of Radiology, Hospital of University of Pennsylvania, 3400 Spruce Street, 19104, Philadelphia, PA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Alavi", 
        "givenName": "Abass", 
        "id": "sg:person.013064447257.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013064447257.07"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.2967/jnumed.106.035774", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005435708"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00259-002-0924-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012723639", 
          "https://doi.org/10.1007/s00259-002-0924-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00004728-199007000-00011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018471449"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00004728-199007000-00011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018471449"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1038/jcbfm.1992.81", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033466882"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1038/jcbfm.1992.81", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033466882"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00004728-198406000-00028", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036659637"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00004728-198406000-00028", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036659637"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00004728-197906000-00001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040716713"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00004728-197906000-00001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040716713"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1053/snuc.2002.127291", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052607905"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1053/snuc.2002.127291", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052607905"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1074718580", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1075081052", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1075171681", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1076794518", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1076848682", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1079783445", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiology.188.2.8327702", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1082758769"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiology.187.3.8497624", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1082831968"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1083263153", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1083385276", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2009-06", 
    "datePublishedReg": "2009-06-01", 
    "description": "OBJECTIVES: Correction of the \"partial volume effect\" has been an area of great interest in the recent times in quantitative PET imaging and has been mainly studied with count recovery models based upon phantoms that incorporate hot spheres in a cold background. The goal of this research study was to establish a similar model that is closer to a biological imaging environment, namely hot spheres/lesions in a warm background and to apply this model in a small cohort of patients.\nMETHODS: A NEMA phantom with six spheres (diameters 1-3.7 cm) was filled with (18)FDG to give sphere:background activity ratios of 8:1, 6:1, and 4:1 for three different acquisitions on a Philips Allegro scanner. The hot sphere SUVmax and the background average SUV were measured for calculation of recovery coefficients (RCs). Using the RCs, the lesion diameters, and the lesion:background ratio, the SUVmax of 64 lesions from 17 patients with biopsy proven lung cancer were corrected.\nRESULTS: The RCs versus sphere diameters produced characteristic logarithmic curves for each phantom (RCs ranged from 80% to 11%). From a cohort of 17 patients with biopsy proven lung cancer, 64 lesions combined had a mean SUVmax of 7.0 and size of 2.5 cm. After partial volume correction of the SUVmax of each lesion, the average SUVmax increased to 15.5.\nCONCLUSIONS: Hot spheres in a warm background more closely resemble the actual imaging situation in a living subject when compared to hot spheres in a cold background. This method could facilitate generation of equipment specific recovery coefficients for partial volume correction. The clinical implications for the increased accuracy in SUV determination are certainly of potential value in oncologic imaging.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s12149-009-0241-9", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1099601", 
        "issn": [
          "0914-7187", 
          "1864-6433"
        ], 
        "name": "Annals of Nuclear Medicine", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "23"
      }
    ], 
    "name": "A recovery coefficient method for partial volume correction of PET images", 
    "pagination": "341-348", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "4c84565f747352ba5d220184fb1a26f2268758706648043a288aa89900c51170"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "19367446"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "8913398"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s12149-009-0241-9"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1016058825"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s12149-009-0241-9", 
      "https://app.dimensions.ai/details/publication/pub.1016058825"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T09:12", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000338_0000000338/records_47989_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs12149-009-0241-9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12149-009-0241-9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12149-009-0241-9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12149-009-0241-9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12149-009-0241-9'


 

This table displays all metadata directly associated to this object as RDF triples.

197 TRIPLES      21 PREDICATES      55 URIs      30 LITERALS      18 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s12149-009-0241-9 schema:about N14ff30cf40ea43898b7386322e037713
2 N2b4d0591d6394e459f8608f47f9700e9
3 N56a5c113e2d14cec90ed71901537112c
4 N64b2018500384230b41fbdcf57f1c4c8
5 N71ed5f0d180e4f91be3134405de58565
6 Nc342cc8976634dba801d070729018f8c
7 Ncde984aeb98c4553b09ea5e6911a0e18
8 Ne6ed4e48772c49e388c8f4a302026b78
9 Nf2c27d3d36b24884bd869a0c20679421
10 anzsrc-for:11
11 anzsrc-for:1112
12 schema:author Nfaacd50fa0e240299faba929bc3db896
13 schema:citation sg:pub.10.1007/s00259-002-0924-0
14 https://app.dimensions.ai/details/publication/pub.1074718580
15 https://app.dimensions.ai/details/publication/pub.1075081052
16 https://app.dimensions.ai/details/publication/pub.1075171681
17 https://app.dimensions.ai/details/publication/pub.1076794518
18 https://app.dimensions.ai/details/publication/pub.1076848682
19 https://app.dimensions.ai/details/publication/pub.1079783445
20 https://app.dimensions.ai/details/publication/pub.1083263153
21 https://app.dimensions.ai/details/publication/pub.1083385276
22 https://doi.org/10.1038/jcbfm.1992.81
23 https://doi.org/10.1053/snuc.2002.127291
24 https://doi.org/10.1097/00004728-197906000-00001
25 https://doi.org/10.1097/00004728-198406000-00028
26 https://doi.org/10.1097/00004728-199007000-00011
27 https://doi.org/10.1148/radiology.187.3.8497624
28 https://doi.org/10.1148/radiology.188.2.8327702
29 https://doi.org/10.2967/jnumed.106.035774
30 schema:datePublished 2009-06
31 schema:datePublishedReg 2009-06-01
32 schema:description OBJECTIVES: Correction of the "partial volume effect" has been an area of great interest in the recent times in quantitative PET imaging and has been mainly studied with count recovery models based upon phantoms that incorporate hot spheres in a cold background. The goal of this research study was to establish a similar model that is closer to a biological imaging environment, namely hot spheres/lesions in a warm background and to apply this model in a small cohort of patients. METHODS: A NEMA phantom with six spheres (diameters 1-3.7 cm) was filled with (18)FDG to give sphere:background activity ratios of 8:1, 6:1, and 4:1 for three different acquisitions on a Philips Allegro scanner. The hot sphere SUVmax and the background average SUV were measured for calculation of recovery coefficients (RCs). Using the RCs, the lesion diameters, and the lesion:background ratio, the SUVmax of 64 lesions from 17 patients with biopsy proven lung cancer were corrected. RESULTS: The RCs versus sphere diameters produced characteristic logarithmic curves for each phantom (RCs ranged from 80% to 11%). From a cohort of 17 patients with biopsy proven lung cancer, 64 lesions combined had a mean SUVmax of 7.0 and size of 2.5 cm. After partial volume correction of the SUVmax of each lesion, the average SUVmax increased to 15.5. CONCLUSIONS: Hot spheres in a warm background more closely resemble the actual imaging situation in a living subject when compared to hot spheres in a cold background. This method could facilitate generation of equipment specific recovery coefficients for partial volume correction. The clinical implications for the increased accuracy in SUV determination are certainly of potential value in oncologic imaging.
33 schema:genre research_article
34 schema:inLanguage en
35 schema:isAccessibleForFree false
36 schema:isPartOf N71df43082dd74500bc5515f68080bae8
37 N8af7b63b979c4b31814a7992b1ea9810
38 sg:journal.1099601
39 schema:name A recovery coefficient method for partial volume correction of PET images
40 schema:pagination 341-348
41 schema:productId N285ccd70a3a34381b53c17aa8586de35
42 N30292ccd9d7f41e280b0047a1543e233
43 N71a6ec30d1924cbaa4b75dbfd0bc3ce0
44 N8b2518d3e7bc424582823b33a37b5547
45 N9fb98f3596bf47deb69b035cfcbd8252
46 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016058825
47 https://doi.org/10.1007/s12149-009-0241-9
48 schema:sdDatePublished 2019-04-11T09:12
49 schema:sdLicense https://scigraph.springernature.com/explorer/license/
50 schema:sdPublisher N8528065c1d0d4a09bf198f7e31a14db1
51 schema:url http://link.springer.com/10.1007%2Fs12149-009-0241-9
52 sgo:license sg:explorer/license/
53 sgo:sdDataset articles
54 rdf:type schema:ScholarlyArticle
55 N09afabc0f92c4e0486dd43d90ae5b33d rdf:first sg:person.01042154521.46
56 rdf:rest N866d8db9577e4c608f59096de35bfbb2
57 N14ff30cf40ea43898b7386322e037713 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
58 schema:name Humans
59 rdf:type schema:DefinedTerm
60 N17ea68dad8b24d73890db8d24be8aa1b rdf:first sg:person.0610114732.28
61 rdf:rest N09afabc0f92c4e0486dd43d90ae5b33d
62 N23a9cbe6443642ceb1ceb40915e61127 rdf:first sg:person.013064447257.07
63 rdf:rest rdf:nil
64 N285ccd70a3a34381b53c17aa8586de35 schema:name readcube_id
65 schema:value 4c84565f747352ba5d220184fb1a26f2268758706648043a288aa89900c51170
66 rdf:type schema:PropertyValue
67 N2b4d0591d6394e459f8608f47f9700e9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
68 schema:name Phantoms, Imaging
69 rdf:type schema:DefinedTerm
70 N30292ccd9d7f41e280b0047a1543e233 schema:name nlm_unique_id
71 schema:value 8913398
72 rdf:type schema:PropertyValue
73 N56a5c113e2d14cec90ed71901537112c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
74 schema:name Biopsy
75 rdf:type schema:DefinedTerm
76 N64b2018500384230b41fbdcf57f1c4c8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
77 schema:name Image Processing, Computer-Assisted
78 rdf:type schema:DefinedTerm
79 N71a6ec30d1924cbaa4b75dbfd0bc3ce0 schema:name dimensions_id
80 schema:value pub.1016058825
81 rdf:type schema:PropertyValue
82 N71df43082dd74500bc5515f68080bae8 schema:issueNumber 4
83 rdf:type schema:PublicationIssue
84 N71ed5f0d180e4f91be3134405de58565 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
85 schema:name Lung Neoplasms
86 rdf:type schema:DefinedTerm
87 N8528065c1d0d4a09bf198f7e31a14db1 schema:name Springer Nature - SN SciGraph project
88 rdf:type schema:Organization
89 N866d8db9577e4c608f59096de35bfbb2 rdf:first sg:person.0627642427.43
90 rdf:rest Nc347f3bfa97649a19eca2b32d99a1ec6
91 N8af7b63b979c4b31814a7992b1ea9810 schema:volumeNumber 23
92 rdf:type schema:PublicationVolume
93 N8b2518d3e7bc424582823b33a37b5547 schema:name pubmed_id
94 schema:value 19367446
95 rdf:type schema:PropertyValue
96 N9fb98f3596bf47deb69b035cfcbd8252 schema:name doi
97 schema:value 10.1007/s12149-009-0241-9
98 rdf:type schema:PropertyValue
99 Nc342cc8976634dba801d070729018f8c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
100 schema:name Image Interpretation, Computer-Assisted
101 rdf:type schema:DefinedTerm
102 Nc347f3bfa97649a19eca2b32d99a1ec6 rdf:first sg:person.01053503413.15
103 rdf:rest N23a9cbe6443642ceb1ceb40915e61127
104 Ncde984aeb98c4553b09ea5e6911a0e18 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
105 schema:name Models, Biological
106 rdf:type schema:DefinedTerm
107 Ne6ed4e48772c49e388c8f4a302026b78 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
108 schema:name Positron-Emission Tomography
109 rdf:type schema:DefinedTerm
110 Nf2c27d3d36b24884bd869a0c20679421 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
111 schema:name Temperature
112 rdf:type schema:DefinedTerm
113 Nfaacd50fa0e240299faba929bc3db896 rdf:first sg:person.01265405632.24
114 rdf:rest N17ea68dad8b24d73890db8d24be8aa1b
115 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
116 schema:name Medical and Health Sciences
117 rdf:type schema:DefinedTerm
118 anzsrc-for:1112 schema:inDefinedTermSet anzsrc-for:
119 schema:name Oncology and Carcinogenesis
120 rdf:type schema:DefinedTerm
121 sg:journal.1099601 schema:issn 0914-7187
122 1864-6433
123 schema:name Annals of Nuclear Medicine
124 rdf:type schema:Periodical
125 sg:person.01042154521.46 schema:affiliation https://www.grid.ac/institutes/grid.418304.a
126 schema:familyName Basu
127 schema:givenName Sandip
128 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01042154521.46
129 rdf:type schema:Person
130 sg:person.01053503413.15 schema:affiliation https://www.grid.ac/institutes/grid.411115.1
131 schema:familyName Surti
132 schema:givenName Suleman
133 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01053503413.15
134 rdf:type schema:Person
135 sg:person.01265405632.24 schema:affiliation https://www.grid.ac/institutes/grid.239578.2
136 schema:familyName Srinivas
137 schema:givenName Shyam M.
138 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01265405632.24
139 rdf:type schema:Person
140 sg:person.013064447257.07 schema:affiliation https://www.grid.ac/institutes/grid.411115.1
141 schema:familyName Alavi
142 schema:givenName Abass
143 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013064447257.07
144 rdf:type schema:Person
145 sg:person.0610114732.28 schema:affiliation https://www.grid.ac/institutes/grid.17635.36
146 schema:familyName Dhurairaj
147 schema:givenName Thiruvenkatasamy
148 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0610114732.28
149 rdf:type schema:Person
150 sg:person.0627642427.43 schema:affiliation https://www.grid.ac/institutes/grid.62560.37
151 schema:familyName Bural
152 schema:givenName Gonca
153 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0627642427.43
154 rdf:type schema:Person
155 sg:pub.10.1007/s00259-002-0924-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012723639
156 https://doi.org/10.1007/s00259-002-0924-0
157 rdf:type schema:CreativeWork
158 https://app.dimensions.ai/details/publication/pub.1074718580 schema:CreativeWork
159 https://app.dimensions.ai/details/publication/pub.1075081052 schema:CreativeWork
160 https://app.dimensions.ai/details/publication/pub.1075171681 schema:CreativeWork
161 https://app.dimensions.ai/details/publication/pub.1076794518 schema:CreativeWork
162 https://app.dimensions.ai/details/publication/pub.1076848682 schema:CreativeWork
163 https://app.dimensions.ai/details/publication/pub.1079783445 schema:CreativeWork
164 https://app.dimensions.ai/details/publication/pub.1083263153 schema:CreativeWork
165 https://app.dimensions.ai/details/publication/pub.1083385276 schema:CreativeWork
166 https://doi.org/10.1038/jcbfm.1992.81 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033466882
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1053/snuc.2002.127291 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052607905
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1097/00004728-197906000-00001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040716713
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1097/00004728-198406000-00028 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036659637
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1097/00004728-199007000-00011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018471449
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1148/radiology.187.3.8497624 schema:sameAs https://app.dimensions.ai/details/publication/pub.1082831968
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1148/radiology.188.2.8327702 schema:sameAs https://app.dimensions.ai/details/publication/pub.1082758769
179 rdf:type schema:CreativeWork
180 https://doi.org/10.2967/jnumed.106.035774 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005435708
181 rdf:type schema:CreativeWork
182 https://www.grid.ac/institutes/grid.17635.36 schema:alternateName University of Minnesota
183 schema:name Department of Radiology, University of Minnesota, Minneapolis, MN, USA
184 rdf:type schema:Organization
185 https://www.grid.ac/institutes/grid.239578.2 schema:alternateName Cleveland Clinic
186 schema:name Department of Nuclear Medicine, Cleveland Clinic, Cleveland, OH, USA
187 rdf:type schema:Organization
188 https://www.grid.ac/institutes/grid.411115.1 schema:alternateName Hospital of the University of Pennsylvania
189 schema:name Division of Nuclear Medicine, Department of Radiology, Hospital of University of Pennsylvania, 3400 Spruce Street, 19104, Philadelphia, PA, USA
190 rdf:type schema:Organization
191 https://www.grid.ac/institutes/grid.418304.a schema:alternateName Bhabha Atomic Research Centre
192 schema:name Division of Nuclear Medicine, Department of Radiology, Hospital of University of Pennsylvania, 3400 Spruce Street, 19104, Philadelphia, PA, USA
193 Radiation Medicine Centre (BARC) Tata Memorial Hospital Annexe, Parel, Bombay, India
194 rdf:type schema:Organization
195 https://www.grid.ac/institutes/grid.62560.37 schema:alternateName Brigham and Women's Hospital
196 schema:name Department of Radiology, Brigham & Women’s Hospital, Boston, MA, USA
197 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...