A recovery coefficient method for partial volume correction of PET images View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2009-06

AUTHORS

Shyam M. Srinivas, Thiruvenkatasamy Dhurairaj, Sandip Basu, Gonca Bural, Suleman Surti, Abass Alavi

ABSTRACT

OBJECTIVES: Correction of the "partial volume effect" has been an area of great interest in the recent times in quantitative PET imaging and has been mainly studied with count recovery models based upon phantoms that incorporate hot spheres in a cold background. The goal of this research study was to establish a similar model that is closer to a biological imaging environment, namely hot spheres/lesions in a warm background and to apply this model in a small cohort of patients. METHODS: A NEMA phantom with six spheres (diameters 1-3.7 cm) was filled with (18)FDG to give sphere:background activity ratios of 8:1, 6:1, and 4:1 for three different acquisitions on a Philips Allegro scanner. The hot sphere SUVmax and the background average SUV were measured for calculation of recovery coefficients (RCs). Using the RCs, the lesion diameters, and the lesion:background ratio, the SUVmax of 64 lesions from 17 patients with biopsy proven lung cancer were corrected. RESULTS: The RCs versus sphere diameters produced characteristic logarithmic curves for each phantom (RCs ranged from 80% to 11%). From a cohort of 17 patients with biopsy proven lung cancer, 64 lesions combined had a mean SUVmax of 7.0 and size of 2.5 cm. After partial volume correction of the SUVmax of each lesion, the average SUVmax increased to 15.5. CONCLUSIONS: Hot spheres in a warm background more closely resemble the actual imaging situation in a living subject when compared to hot spheres in a cold background. This method could facilitate generation of equipment specific recovery coefficients for partial volume correction. The clinical implications for the increased accuracy in SUV determination are certainly of potential value in oncologic imaging. More... »

PAGES

341-348

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s12149-009-0241-9

DOI

http://dx.doi.org/10.1007/s12149-009-0241-9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1016058825

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/19367446


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1112", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Oncology and Carcinogenesis", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Biopsy", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Image Interpretation, Computer-Assisted", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Image Processing, Computer-Assisted", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Lung Neoplasms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Biological", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Phantoms, Imaging", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Positron-Emission Tomography", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Temperature", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Cleveland Clinic", 
          "id": "https://www.grid.ac/institutes/grid.239578.2", 
          "name": [
            "Department of Nuclear Medicine, Cleveland Clinic, Cleveland, OH, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Srinivas", 
        "givenName": "Shyam M.", 
        "id": "sg:person.01265405632.24", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01265405632.24"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Minnesota", 
          "id": "https://www.grid.ac/institutes/grid.17635.36", 
          "name": [
            "Department of Radiology, University of Minnesota, Minneapolis, MN, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dhurairaj", 
        "givenName": "Thiruvenkatasamy", 
        "id": "sg:person.0610114732.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0610114732.28"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Bhabha Atomic Research Centre", 
          "id": "https://www.grid.ac/institutes/grid.418304.a", 
          "name": [
            "Division of Nuclear Medicine, Department of Radiology, Hospital of University of Pennsylvania, 3400 Spruce Street, 19104, Philadelphia, PA, USA", 
            "Radiation Medicine Centre (BARC) Tata Memorial Hospital Annexe, Parel, Bombay, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Basu", 
        "givenName": "Sandip", 
        "id": "sg:person.01042154521.46", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01042154521.46"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Brigham and Women's Hospital", 
          "id": "https://www.grid.ac/institutes/grid.62560.37", 
          "name": [
            "Department of Radiology, Brigham & Women\u2019s Hospital, Boston, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bural", 
        "givenName": "Gonca", 
        "id": "sg:person.0627642427.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0627642427.43"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hospital of the University of Pennsylvania", 
          "id": "https://www.grid.ac/institutes/grid.411115.1", 
          "name": [
            "Division of Nuclear Medicine, Department of Radiology, Hospital of University of Pennsylvania, 3400 Spruce Street, 19104, Philadelphia, PA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Surti", 
        "givenName": "Suleman", 
        "id": "sg:person.01053503413.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01053503413.15"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hospital of the University of Pennsylvania", 
          "id": "https://www.grid.ac/institutes/grid.411115.1", 
          "name": [
            "Division of Nuclear Medicine, Department of Radiology, Hospital of University of Pennsylvania, 3400 Spruce Street, 19104, Philadelphia, PA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Alavi", 
        "givenName": "Abass", 
        "id": "sg:person.013064447257.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013064447257.07"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.2967/jnumed.106.035774", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005435708"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00259-002-0924-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012723639", 
          "https://doi.org/10.1007/s00259-002-0924-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00004728-199007000-00011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018471449"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00004728-199007000-00011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018471449"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1038/jcbfm.1992.81", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033466882"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1038/jcbfm.1992.81", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033466882"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00004728-198406000-00028", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036659637"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00004728-198406000-00028", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036659637"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00004728-197906000-00001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040716713"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00004728-197906000-00001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040716713"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1053/snuc.2002.127291", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052607905"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1053/snuc.2002.127291", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052607905"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1074718580", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1075081052", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1075171681", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1076794518", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1076848682", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1079783445", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiology.188.2.8327702", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1082758769"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiology.187.3.8497624", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1082831968"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1083263153", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1083385276", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2009-06", 
    "datePublishedReg": "2009-06-01", 
    "description": "OBJECTIVES: Correction of the \"partial volume effect\" has been an area of great interest in the recent times in quantitative PET imaging and has been mainly studied with count recovery models based upon phantoms that incorporate hot spheres in a cold background. The goal of this research study was to establish a similar model that is closer to a biological imaging environment, namely hot spheres/lesions in a warm background and to apply this model in a small cohort of patients.\nMETHODS: A NEMA phantom with six spheres (diameters 1-3.7 cm) was filled with (18)FDG to give sphere:background activity ratios of 8:1, 6:1, and 4:1 for three different acquisitions on a Philips Allegro scanner. The hot sphere SUVmax and the background average SUV were measured for calculation of recovery coefficients (RCs). Using the RCs, the lesion diameters, and the lesion:background ratio, the SUVmax of 64 lesions from 17 patients with biopsy proven lung cancer were corrected.\nRESULTS: The RCs versus sphere diameters produced characteristic logarithmic curves for each phantom (RCs ranged from 80% to 11%). From a cohort of 17 patients with biopsy proven lung cancer, 64 lesions combined had a mean SUVmax of 7.0 and size of 2.5 cm. After partial volume correction of the SUVmax of each lesion, the average SUVmax increased to 15.5.\nCONCLUSIONS: Hot spheres in a warm background more closely resemble the actual imaging situation in a living subject when compared to hot spheres in a cold background. This method could facilitate generation of equipment specific recovery coefficients for partial volume correction. The clinical implications for the increased accuracy in SUV determination are certainly of potential value in oncologic imaging.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s12149-009-0241-9", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1099601", 
        "issn": [
          "0914-7187", 
          "1864-6433"
        ], 
        "name": "Annals of Nuclear Medicine", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "23"
      }
    ], 
    "name": "A recovery coefficient method for partial volume correction of PET images", 
    "pagination": "341-348", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "4c84565f747352ba5d220184fb1a26f2268758706648043a288aa89900c51170"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "19367446"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "8913398"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s12149-009-0241-9"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1016058825"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s12149-009-0241-9", 
      "https://app.dimensions.ai/details/publication/pub.1016058825"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T09:12", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000338_0000000338/records_47989_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs12149-009-0241-9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12149-009-0241-9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12149-009-0241-9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12149-009-0241-9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12149-009-0241-9'


 

This table displays all metadata directly associated to this object as RDF triples.

197 TRIPLES      21 PREDICATES      55 URIs      30 LITERALS      18 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s12149-009-0241-9 schema:about N3d1db3a5d5094951b1e7379470e79f7a
2 N61d91bc99066491682f577adff54bbd4
3 N7d925b0889744d95ac6bb1548c773036
4 Na81a5e8c8b364878b1064e0aa4dfb198
5 Naae2073fd9ef4c0da5d0f22b5ba0ebc8
6 Nc937c126551345e8a2e75d7830e0916a
7 Nd498ee6a7f0040709e56b1a3f428efb6
8 Ne845e46a12cd4385adb48de597e1d590
9 Nfd4d0a74b2674b858d4b1132fcd89cf4
10 anzsrc-for:11
11 anzsrc-for:1112
12 schema:author N8ef93be9c8ae45b7a5c0b2933b140235
13 schema:citation sg:pub.10.1007/s00259-002-0924-0
14 https://app.dimensions.ai/details/publication/pub.1074718580
15 https://app.dimensions.ai/details/publication/pub.1075081052
16 https://app.dimensions.ai/details/publication/pub.1075171681
17 https://app.dimensions.ai/details/publication/pub.1076794518
18 https://app.dimensions.ai/details/publication/pub.1076848682
19 https://app.dimensions.ai/details/publication/pub.1079783445
20 https://app.dimensions.ai/details/publication/pub.1083263153
21 https://app.dimensions.ai/details/publication/pub.1083385276
22 https://doi.org/10.1038/jcbfm.1992.81
23 https://doi.org/10.1053/snuc.2002.127291
24 https://doi.org/10.1097/00004728-197906000-00001
25 https://doi.org/10.1097/00004728-198406000-00028
26 https://doi.org/10.1097/00004728-199007000-00011
27 https://doi.org/10.1148/radiology.187.3.8497624
28 https://doi.org/10.1148/radiology.188.2.8327702
29 https://doi.org/10.2967/jnumed.106.035774
30 schema:datePublished 2009-06
31 schema:datePublishedReg 2009-06-01
32 schema:description OBJECTIVES: Correction of the "partial volume effect" has been an area of great interest in the recent times in quantitative PET imaging and has been mainly studied with count recovery models based upon phantoms that incorporate hot spheres in a cold background. The goal of this research study was to establish a similar model that is closer to a biological imaging environment, namely hot spheres/lesions in a warm background and to apply this model in a small cohort of patients. METHODS: A NEMA phantom with six spheres (diameters 1-3.7 cm) was filled with (18)FDG to give sphere:background activity ratios of 8:1, 6:1, and 4:1 for three different acquisitions on a Philips Allegro scanner. The hot sphere SUVmax and the background average SUV were measured for calculation of recovery coefficients (RCs). Using the RCs, the lesion diameters, and the lesion:background ratio, the SUVmax of 64 lesions from 17 patients with biopsy proven lung cancer were corrected. RESULTS: The RCs versus sphere diameters produced characteristic logarithmic curves for each phantom (RCs ranged from 80% to 11%). From a cohort of 17 patients with biopsy proven lung cancer, 64 lesions combined had a mean SUVmax of 7.0 and size of 2.5 cm. After partial volume correction of the SUVmax of each lesion, the average SUVmax increased to 15.5. CONCLUSIONS: Hot spheres in a warm background more closely resemble the actual imaging situation in a living subject when compared to hot spheres in a cold background. This method could facilitate generation of equipment specific recovery coefficients for partial volume correction. The clinical implications for the increased accuracy in SUV determination are certainly of potential value in oncologic imaging.
33 schema:genre research_article
34 schema:inLanguage en
35 schema:isAccessibleForFree false
36 schema:isPartOf Nb7632d5d11c947a3b3cf43e1edeea998
37 Nc3b1f6ee31e145338560753a2ab87cca
38 sg:journal.1099601
39 schema:name A recovery coefficient method for partial volume correction of PET images
40 schema:pagination 341-348
41 schema:productId N080d13c3a8eb45329bfa401fff37cb58
42 N1a00f2e9fbb94bc8b07a344749e8038f
43 N22501d2af77644a4867d12a1403a7e00
44 Ned29ea85f5c7444691fd176990a5d626
45 Nfbe29257a4cb42fa8da8c44ee4a0b33d
46 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016058825
47 https://doi.org/10.1007/s12149-009-0241-9
48 schema:sdDatePublished 2019-04-11T09:12
49 schema:sdLicense https://scigraph.springernature.com/explorer/license/
50 schema:sdPublisher N365f5cda2f014a9dacdfd1de173023de
51 schema:url http://link.springer.com/10.1007%2Fs12149-009-0241-9
52 sgo:license sg:explorer/license/
53 sgo:sdDataset articles
54 rdf:type schema:ScholarlyArticle
55 N080d13c3a8eb45329bfa401fff37cb58 schema:name doi
56 schema:value 10.1007/s12149-009-0241-9
57 rdf:type schema:PropertyValue
58 N1a00f2e9fbb94bc8b07a344749e8038f schema:name nlm_unique_id
59 schema:value 8913398
60 rdf:type schema:PropertyValue
61 N22501d2af77644a4867d12a1403a7e00 schema:name dimensions_id
62 schema:value pub.1016058825
63 rdf:type schema:PropertyValue
64 N365f5cda2f014a9dacdfd1de173023de schema:name Springer Nature - SN SciGraph project
65 rdf:type schema:Organization
66 N3d1db3a5d5094951b1e7379470e79f7a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
67 schema:name Phantoms, Imaging
68 rdf:type schema:DefinedTerm
69 N52771fda522542159819a1d407f4d975 rdf:first sg:person.013064447257.07
70 rdf:rest rdf:nil
71 N53245f428bd441139e3b3b24aff86a4d rdf:first sg:person.0627642427.43
72 rdf:rest Nff384d58af504dd0a57dc103dc6d6fbd
73 N61d91bc99066491682f577adff54bbd4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
74 schema:name Humans
75 rdf:type schema:DefinedTerm
76 N686ed9c0b1b14840a367385d085e95e1 rdf:first sg:person.01042154521.46
77 rdf:rest N53245f428bd441139e3b3b24aff86a4d
78 N75b83240705540f199d9bb763c134b40 rdf:first sg:person.0610114732.28
79 rdf:rest N686ed9c0b1b14840a367385d085e95e1
80 N7d925b0889744d95ac6bb1548c773036 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
81 schema:name Image Processing, Computer-Assisted
82 rdf:type schema:DefinedTerm
83 N8ef93be9c8ae45b7a5c0b2933b140235 rdf:first sg:person.01265405632.24
84 rdf:rest N75b83240705540f199d9bb763c134b40
85 Na81a5e8c8b364878b1064e0aa4dfb198 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
86 schema:name Lung Neoplasms
87 rdf:type schema:DefinedTerm
88 Naae2073fd9ef4c0da5d0f22b5ba0ebc8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
89 schema:name Positron-Emission Tomography
90 rdf:type schema:DefinedTerm
91 Nb7632d5d11c947a3b3cf43e1edeea998 schema:issueNumber 4
92 rdf:type schema:PublicationIssue
93 Nc3b1f6ee31e145338560753a2ab87cca schema:volumeNumber 23
94 rdf:type schema:PublicationVolume
95 Nc937c126551345e8a2e75d7830e0916a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
96 schema:name Image Interpretation, Computer-Assisted
97 rdf:type schema:DefinedTerm
98 Nd498ee6a7f0040709e56b1a3f428efb6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
99 schema:name Biopsy
100 rdf:type schema:DefinedTerm
101 Ne845e46a12cd4385adb48de597e1d590 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
102 schema:name Temperature
103 rdf:type schema:DefinedTerm
104 Ned29ea85f5c7444691fd176990a5d626 schema:name pubmed_id
105 schema:value 19367446
106 rdf:type schema:PropertyValue
107 Nfbe29257a4cb42fa8da8c44ee4a0b33d schema:name readcube_id
108 schema:value 4c84565f747352ba5d220184fb1a26f2268758706648043a288aa89900c51170
109 rdf:type schema:PropertyValue
110 Nfd4d0a74b2674b858d4b1132fcd89cf4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
111 schema:name Models, Biological
112 rdf:type schema:DefinedTerm
113 Nff384d58af504dd0a57dc103dc6d6fbd rdf:first sg:person.01053503413.15
114 rdf:rest N52771fda522542159819a1d407f4d975
115 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
116 schema:name Medical and Health Sciences
117 rdf:type schema:DefinedTerm
118 anzsrc-for:1112 schema:inDefinedTermSet anzsrc-for:
119 schema:name Oncology and Carcinogenesis
120 rdf:type schema:DefinedTerm
121 sg:journal.1099601 schema:issn 0914-7187
122 1864-6433
123 schema:name Annals of Nuclear Medicine
124 rdf:type schema:Periodical
125 sg:person.01042154521.46 schema:affiliation https://www.grid.ac/institutes/grid.418304.a
126 schema:familyName Basu
127 schema:givenName Sandip
128 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01042154521.46
129 rdf:type schema:Person
130 sg:person.01053503413.15 schema:affiliation https://www.grid.ac/institutes/grid.411115.1
131 schema:familyName Surti
132 schema:givenName Suleman
133 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01053503413.15
134 rdf:type schema:Person
135 sg:person.01265405632.24 schema:affiliation https://www.grid.ac/institutes/grid.239578.2
136 schema:familyName Srinivas
137 schema:givenName Shyam M.
138 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01265405632.24
139 rdf:type schema:Person
140 sg:person.013064447257.07 schema:affiliation https://www.grid.ac/institutes/grid.411115.1
141 schema:familyName Alavi
142 schema:givenName Abass
143 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013064447257.07
144 rdf:type schema:Person
145 sg:person.0610114732.28 schema:affiliation https://www.grid.ac/institutes/grid.17635.36
146 schema:familyName Dhurairaj
147 schema:givenName Thiruvenkatasamy
148 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0610114732.28
149 rdf:type schema:Person
150 sg:person.0627642427.43 schema:affiliation https://www.grid.ac/institutes/grid.62560.37
151 schema:familyName Bural
152 schema:givenName Gonca
153 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0627642427.43
154 rdf:type schema:Person
155 sg:pub.10.1007/s00259-002-0924-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012723639
156 https://doi.org/10.1007/s00259-002-0924-0
157 rdf:type schema:CreativeWork
158 https://app.dimensions.ai/details/publication/pub.1074718580 schema:CreativeWork
159 https://app.dimensions.ai/details/publication/pub.1075081052 schema:CreativeWork
160 https://app.dimensions.ai/details/publication/pub.1075171681 schema:CreativeWork
161 https://app.dimensions.ai/details/publication/pub.1076794518 schema:CreativeWork
162 https://app.dimensions.ai/details/publication/pub.1076848682 schema:CreativeWork
163 https://app.dimensions.ai/details/publication/pub.1079783445 schema:CreativeWork
164 https://app.dimensions.ai/details/publication/pub.1083263153 schema:CreativeWork
165 https://app.dimensions.ai/details/publication/pub.1083385276 schema:CreativeWork
166 https://doi.org/10.1038/jcbfm.1992.81 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033466882
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1053/snuc.2002.127291 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052607905
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1097/00004728-197906000-00001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040716713
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1097/00004728-198406000-00028 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036659637
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1097/00004728-199007000-00011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018471449
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1148/radiology.187.3.8497624 schema:sameAs https://app.dimensions.ai/details/publication/pub.1082831968
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1148/radiology.188.2.8327702 schema:sameAs https://app.dimensions.ai/details/publication/pub.1082758769
179 rdf:type schema:CreativeWork
180 https://doi.org/10.2967/jnumed.106.035774 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005435708
181 rdf:type schema:CreativeWork
182 https://www.grid.ac/institutes/grid.17635.36 schema:alternateName University of Minnesota
183 schema:name Department of Radiology, University of Minnesota, Minneapolis, MN, USA
184 rdf:type schema:Organization
185 https://www.grid.ac/institutes/grid.239578.2 schema:alternateName Cleveland Clinic
186 schema:name Department of Nuclear Medicine, Cleveland Clinic, Cleveland, OH, USA
187 rdf:type schema:Organization
188 https://www.grid.ac/institutes/grid.411115.1 schema:alternateName Hospital of the University of Pennsylvania
189 schema:name Division of Nuclear Medicine, Department of Radiology, Hospital of University of Pennsylvania, 3400 Spruce Street, 19104, Philadelphia, PA, USA
190 rdf:type schema:Organization
191 https://www.grid.ac/institutes/grid.418304.a schema:alternateName Bhabha Atomic Research Centre
192 schema:name Division of Nuclear Medicine, Department of Radiology, Hospital of University of Pennsylvania, 3400 Spruce Street, 19104, Philadelphia, PA, USA
193 Radiation Medicine Centre (BARC) Tata Memorial Hospital Annexe, Parel, Bombay, India
194 rdf:type schema:Organization
195 https://www.grid.ac/institutes/grid.62560.37 schema:alternateName Brigham and Women's Hospital
196 schema:name Department of Radiology, Brigham & Women’s Hospital, Boston, MA, USA
197 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...