Does partial volume corrected maximum SUV based on count recovery coefficient in 3D-PET/CT correlate with clinical aggressiveness of non-Hodgkin’s lymphoma? View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2008-01

AUTHORS

Tetsuya Tsujikawa, Hideki Otsuka, Naomi Morita, Hiroshi Saegusa, Masato Kobayashi, Hidehiko Okazawa, Hiromu Nishitani

ABSTRACT

OBJECTIVE: There is much controversy about the correlation between the degree of 2-[(18)F]fluoro-2-deoxy-D: -glucose (FDG) uptake and clinical aggressiveness of non-Hodgkin's lymphoma (NHL). In this study, we investigated whether partial volume corrected FDG uptake based on count recovery coefficient in 3D-positron emission tomography (PET)/computed tomography (CT) correlates with the clinical aggressiveness of NHL and improves diagnostic accuracy. METHODS: Forty-two patients with NHL underwent FDG-PET/CT scans (26 aggressive NHLs and 16 indolent ones). Count recovery curve was obtained using NEMA 2001 body phantom. Scan protocol and reconstructive parameters in the phantom study were the same as those in a clinical scan except for emission time. Relative recovery coefficient (RC) was calculated as RC = A/B (A, maximum pixel count of each hot sphere; B, maximum pixel count of greatest sphere). Partial volume corrected maximum count of standardized uptake value (PVC-SUV) was calculated as PVC-SUV = NC-SUV/RC (NC-SUV: non-corrected maximum count of SUV). Three parameters (NC-SUV, PVC-SUV, and size) between aggressive and indolent NHLs were compared. RESULTS: Significant differences were shown in all parameters between aggressive and indolent NHLs. Means +/- SD of NC-SUV, PVC-SUV, and size was as following: NC-SUV (15.3 +/- 6.9, 8.7 +/- 7.0; P < 0.01), PVC-SUV (18.2 +/- 8.1, 12.7 +/- 7.8; P < 0.05), and size (mm, 32.4 +/- 18.3, 21.9 +/- 10.3; P < 0.05). When an NC-SUV of 9.5 was the cutoff for aggressive NHL, the receiver-operating-characteristic (ROC) analysis correctly identified 21 of 26 aggressive ones. Sensitivity and specificity were 81% each, and the positive and negative predictive values were 88% and 72%, respectively. When a PVCSUV of 11.2 was the cutoff, the ROC analysis revealed 81% sensitivity, 63% specificity, and positive and negative predictive values of 78% and 67%, respectively. At a cutoff for aggressive NHL of a size of 27 mm, the ROC analysis revealed 50% sensitivity, 81% specificity, and positive and negative predictive values of 81% and 50%, respectively. The comparison of area under the curve in ROC analyses indicated that NC-SUV showed the greatest diagnostic accuracy (NC-SUV 0.84, PVC-SUV 0.72, and size 0.69). CONCLUSIONS: Diagnostic accuracy of PVC-SUV was inferior to that of NC-SUV. These results suggest that NC-SUV, which contains information on both size and FDG density, provides better differentiation between aggressive and indolent NHLs than PVC-SUV. More... »

PAGES

23-30

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s12149-007-0084-1

DOI

http://dx.doi.org/10.1007/s12149-007-0084-1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1047655470

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/18250984


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Clinical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Algorithms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Image Enhancement", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Image Interpretation, Computer-Assisted", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Imaging, Three-Dimensional", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Lymphoma, Non-Hodgkin", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Positron-Emission Tomography", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Reproducibility of Results", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sensitivity and Specificity", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Statistics as Topic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Subtraction Technique", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Tomography, X-Ray Computed", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Fukui", 
          "id": "https://www.grid.ac/institutes/grid.163577.1", 
          "name": [
            "Biomedical Imaging Research Center, University of Fukui, 23-3 Matsuoka-Shimoaizuki, Eiheiji-cho, 910-1193, Fukui, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tsujikawa", 
        "givenName": "Tetsuya", 
        "id": "sg:person.01237563020.08", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01237563020.08"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Tokushima", 
          "id": "https://www.grid.ac/institutes/grid.267335.6", 
          "name": [
            "Department of Radiology, The University of Tokushima Graduate School, Tokushima, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Otsuka", 
        "givenName": "Hideki", 
        "id": "sg:person.01113356574.81", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01113356574.81"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Tokushima", 
          "id": "https://www.grid.ac/institutes/grid.267335.6", 
          "name": [
            "Department of Radiology, The University of Tokushima Graduate School, Tokushima, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Morita", 
        "givenName": "Naomi", 
        "id": "sg:person.01227605174.54", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01227605174.54"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Tokushima", 
          "id": "https://www.grid.ac/institutes/grid.267335.6", 
          "name": [
            "Department of Radiology, The University of Tokushima Graduate School, Tokushima, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Saegusa", 
        "givenName": "Hiroshi", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Fukui", 
          "id": "https://www.grid.ac/institutes/grid.163577.1", 
          "name": [
            "Biomedical Imaging Research Center, University of Fukui, 23-3 Matsuoka-Shimoaizuki, Eiheiji-cho, 910-1193, Fukui, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kobayashi", 
        "givenName": "Masato", 
        "id": "sg:person.01050171230.33", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01050171230.33"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Fukui", 
          "id": "https://www.grid.ac/institutes/grid.163577.1", 
          "name": [
            "Biomedical Imaging Research Center, University of Fukui, 23-3 Matsuoka-Shimoaizuki, Eiheiji-cho, 910-1193, Fukui, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Okazawa", 
        "givenName": "Hidehiko", 
        "id": "sg:person.0623355330.58", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0623355330.58"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Tokushima", 
          "id": "https://www.grid.ac/institutes/grid.267335.6", 
          "name": [
            "Department of Radiology, The University of Tokushima Graduate School, Tokushima, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nishitani", 
        "givenName": "Hiromu", 
        "id": "sg:person.01002771274.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01002771274.55"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1053/j.semnuclmed.2004.03.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002172422"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00259-002-0924-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012723639", 
          "https://doi.org/10.1007/s00259-002-0924-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00259-006-0224-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015743919", 
          "https://doi.org/10.1007/s00259-006-0224-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/rg.251045045", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016087028"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00259-002-0844-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018711233", 
          "https://doi.org/10.1007/s00259-002-0844-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1200/jco.2005.12.072", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024927204"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/annonc/11.suppl_1.s3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032053005"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s002590050275", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034936293", 
          "https://doi.org/10.1007/s002590050275"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00259-005-1784-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040692090", 
          "https://doi.org/10.1007/s00259-005-1784-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00259-005-1784-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040692090", 
          "https://doi.org/10.1007/s00259-005-1784-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00259-005-1784-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040692090", 
          "https://doi.org/10.1007/s00259-005-1784-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/annonc/mdi200", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041182798"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1023/a:1008312726163", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056303080"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1074685202", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1076887958", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1077003951", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1077017453", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1077017454", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1077169832", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1078157689", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1082422079", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiology.190.1.8259386", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1082726125"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1083062541", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1083095803", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiology.203.3.9169707", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083096619"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2008-01", 
    "datePublishedReg": "2008-01-01", 
    "description": "OBJECTIVE: There is much controversy about the correlation between the degree of 2-[(18)F]fluoro-2-deoxy-D: -glucose (FDG) uptake and clinical aggressiveness of non-Hodgkin's lymphoma (NHL). In this study, we investigated whether partial volume corrected FDG uptake based on count recovery coefficient in 3D-positron emission tomography (PET)/computed tomography (CT) correlates with the clinical aggressiveness of NHL and improves diagnostic accuracy.\nMETHODS: Forty-two patients with NHL underwent FDG-PET/CT scans (26 aggressive NHLs and 16 indolent ones). Count recovery curve was obtained using NEMA 2001 body phantom. Scan protocol and reconstructive parameters in the phantom study were the same as those in a clinical scan except for emission time. Relative recovery coefficient (RC) was calculated as RC = A/B (A, maximum pixel count of each hot sphere; B, maximum pixel count of greatest sphere). Partial volume corrected maximum count of standardized uptake value (PVC-SUV) was calculated as PVC-SUV = NC-SUV/RC (NC-SUV: non-corrected maximum count of SUV). Three parameters (NC-SUV, PVC-SUV, and size) between aggressive and indolent NHLs were compared.\nRESULTS: Significant differences were shown in all parameters between aggressive and indolent NHLs. Means +/- SD of NC-SUV, PVC-SUV, and size was as following: NC-SUV (15.3 +/- 6.9, 8.7 +/- 7.0; P < 0.01), PVC-SUV (18.2 +/- 8.1, 12.7 +/- 7.8; P < 0.05), and size (mm, 32.4 +/- 18.3, 21.9 +/- 10.3; P < 0.05). When an NC-SUV of 9.5 was the cutoff for aggressive NHL, the receiver-operating-characteristic (ROC) analysis correctly identified 21 of 26 aggressive ones. Sensitivity and specificity were 81% each, and the positive and negative predictive values were 88% and 72%, respectively. When a PVCSUV of 11.2 was the cutoff, the ROC analysis revealed 81% sensitivity, 63% specificity, and positive and negative predictive values of 78% and 67%, respectively. At a cutoff for aggressive NHL of a size of 27 mm, the ROC analysis revealed 50% sensitivity, 81% specificity, and positive and negative predictive values of 81% and 50%, respectively. The comparison of area under the curve in ROC analyses indicated that NC-SUV showed the greatest diagnostic accuracy (NC-SUV 0.84, PVC-SUV 0.72, and size 0.69).\nCONCLUSIONS: Diagnostic accuracy of PVC-SUV was inferior to that of NC-SUV. These results suggest that NC-SUV, which contains information on both size and FDG density, provides better differentiation between aggressive and indolent NHLs than PVC-SUV.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s12149-007-0084-1", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1099601", 
        "issn": [
          "0914-7187", 
          "1864-6433"
        ], 
        "name": "Annals of Nuclear Medicine", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "22"
      }
    ], 
    "name": "Does partial volume corrected maximum SUV based on count recovery coefficient in 3D-PET/CT correlate with clinical aggressiveness of non-Hodgkin\u2019s lymphoma?", 
    "pagination": "23-30", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "e304918ae72fed1661d9fc633b8baf02c98788dbe3fa3f4be259fdcd3a546a7c"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "18250984"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "8913398"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s12149-007-0084-1"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1047655470"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s12149-007-0084-1", 
      "https://app.dimensions.ai/details/publication/pub.1047655470"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T17:34", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8672_00000524.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs12149-007-0084-1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12149-007-0084-1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12149-007-0084-1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12149-007-0084-1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12149-007-0084-1'


 

This table displays all metadata directly associated to this object as RDF triples.

241 TRIPLES      21 PREDICATES      68 URIs      37 LITERALS      25 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s12149-007-0084-1 schema:about N034f3ed95a0b4b67ba7638184c92dff7
2 N0d943e027209486d8cf612648de7fc66
3 N31426c9d5503444396cdd67404da870f
4 N61f043d9dff842b594ea0d9197e87e4c
5 N984ad687bf3a4326af25616edc33966a
6 N989c11316bcb443cb2aa3c9afad6ac63
7 Nad6641b6aec2419f85227759ff425901
8 Nc4c2b37de7df4c498d318705e856579e
9 Nc4e735331d014488b5f010e74adb396e
10 Nc826a21496754fe3a5af8bd7b03139fb
11 Nd62a25648d7e42418f18186834ed8129
12 Ndb520d834a68455eb491c849bcaab02d
13 Nde25d06f1fcf4370b8460165d59d0adb
14 Ne1f07b793e424000b8d2986678513b1f
15 Ne34cb7709de04abca083e3d85ff80cfb
16 Nece0ec1fa6c642539d5834f78b09283b
17 anzsrc-for:11
18 anzsrc-for:1103
19 schema:author Ncd68438f0b9b4c91832dc6cc54d75aef
20 schema:citation sg:pub.10.1007/s00259-002-0844-z
21 sg:pub.10.1007/s00259-002-0924-0
22 sg:pub.10.1007/s00259-005-1784-1
23 sg:pub.10.1007/s00259-006-0224-1
24 sg:pub.10.1007/s002590050275
25 https://app.dimensions.ai/details/publication/pub.1074685202
26 https://app.dimensions.ai/details/publication/pub.1076887958
27 https://app.dimensions.ai/details/publication/pub.1077003951
28 https://app.dimensions.ai/details/publication/pub.1077017453
29 https://app.dimensions.ai/details/publication/pub.1077017454
30 https://app.dimensions.ai/details/publication/pub.1077169832
31 https://app.dimensions.ai/details/publication/pub.1078157689
32 https://app.dimensions.ai/details/publication/pub.1082422079
33 https://app.dimensions.ai/details/publication/pub.1083062541
34 https://app.dimensions.ai/details/publication/pub.1083095803
35 https://doi.org/10.1023/a:1008312726163
36 https://doi.org/10.1053/j.semnuclmed.2004.03.002
37 https://doi.org/10.1093/annonc/11.suppl_1.s3
38 https://doi.org/10.1093/annonc/mdi200
39 https://doi.org/10.1148/radiology.190.1.8259386
40 https://doi.org/10.1148/radiology.203.3.9169707
41 https://doi.org/10.1148/rg.251045045
42 https://doi.org/10.1200/jco.2005.12.072
43 schema:datePublished 2008-01
44 schema:datePublishedReg 2008-01-01
45 schema:description OBJECTIVE: There is much controversy about the correlation between the degree of 2-[(18)F]fluoro-2-deoxy-D: -glucose (FDG) uptake and clinical aggressiveness of non-Hodgkin's lymphoma (NHL). In this study, we investigated whether partial volume corrected FDG uptake based on count recovery coefficient in 3D-positron emission tomography (PET)/computed tomography (CT) correlates with the clinical aggressiveness of NHL and improves diagnostic accuracy. METHODS: Forty-two patients with NHL underwent FDG-PET/CT scans (26 aggressive NHLs and 16 indolent ones). Count recovery curve was obtained using NEMA 2001 body phantom. Scan protocol and reconstructive parameters in the phantom study were the same as those in a clinical scan except for emission time. Relative recovery coefficient (RC) was calculated as RC = A/B (A, maximum pixel count of each hot sphere; B, maximum pixel count of greatest sphere). Partial volume corrected maximum count of standardized uptake value (PVC-SUV) was calculated as PVC-SUV = NC-SUV/RC (NC-SUV: non-corrected maximum count of SUV). Three parameters (NC-SUV, PVC-SUV, and size) between aggressive and indolent NHLs were compared. RESULTS: Significant differences were shown in all parameters between aggressive and indolent NHLs. Means +/- SD of NC-SUV, PVC-SUV, and size was as following: NC-SUV (15.3 +/- 6.9, 8.7 +/- 7.0; P < 0.01), PVC-SUV (18.2 +/- 8.1, 12.7 +/- 7.8; P < 0.05), and size (mm, 32.4 +/- 18.3, 21.9 +/- 10.3; P < 0.05). When an NC-SUV of 9.5 was the cutoff for aggressive NHL, the receiver-operating-characteristic (ROC) analysis correctly identified 21 of 26 aggressive ones. Sensitivity and specificity were 81% each, and the positive and negative predictive values were 88% and 72%, respectively. When a PVCSUV of 11.2 was the cutoff, the ROC analysis revealed 81% sensitivity, 63% specificity, and positive and negative predictive values of 78% and 67%, respectively. At a cutoff for aggressive NHL of a size of 27 mm, the ROC analysis revealed 50% sensitivity, 81% specificity, and positive and negative predictive values of 81% and 50%, respectively. The comparison of area under the curve in ROC analyses indicated that NC-SUV showed the greatest diagnostic accuracy (NC-SUV 0.84, PVC-SUV 0.72, and size 0.69). CONCLUSIONS: Diagnostic accuracy of PVC-SUV was inferior to that of NC-SUV. These results suggest that NC-SUV, which contains information on both size and FDG density, provides better differentiation between aggressive and indolent NHLs than PVC-SUV.
46 schema:genre research_article
47 schema:inLanguage en
48 schema:isAccessibleForFree false
49 schema:isPartOf N6ecedf38eb8b4cceba5d2611dee88e31
50 Ndbd769bb56d64843bfafbeb27117e02f
51 sg:journal.1099601
52 schema:name Does partial volume corrected maximum SUV based on count recovery coefficient in 3D-PET/CT correlate with clinical aggressiveness of non-Hodgkin’s lymphoma?
53 schema:pagination 23-30
54 schema:productId N080953d2b30c41acbf08455f3aebd1e2
55 N0f6de932e7d040e3a39395c7d1683ca2
56 N44c69308e0e74c3695478cd724bac03e
57 N770cafa363f549bca8c748fc1d0595e8
58 Nca612e857fcf493c9a0b894d129ac854
59 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047655470
60 https://doi.org/10.1007/s12149-007-0084-1
61 schema:sdDatePublished 2019-04-10T17:34
62 schema:sdLicense https://scigraph.springernature.com/explorer/license/
63 schema:sdPublisher N5b99ea15df1548fbbacb1fd46c59ef82
64 schema:url http://link.springer.com/10.1007%2Fs12149-007-0084-1
65 sgo:license sg:explorer/license/
66 sgo:sdDataset articles
67 rdf:type schema:ScholarlyArticle
68 N034f3ed95a0b4b67ba7638184c92dff7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
69 schema:name Algorithms
70 rdf:type schema:DefinedTerm
71 N080953d2b30c41acbf08455f3aebd1e2 schema:name doi
72 schema:value 10.1007/s12149-007-0084-1
73 rdf:type schema:PropertyValue
74 N0d943e027209486d8cf612648de7fc66 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
75 schema:name Subtraction Technique
76 rdf:type schema:DefinedTerm
77 N0f6de932e7d040e3a39395c7d1683ca2 schema:name pubmed_id
78 schema:value 18250984
79 rdf:type schema:PropertyValue
80 N31426c9d5503444396cdd67404da870f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
81 schema:name Tomography, X-Ray Computed
82 rdf:type schema:DefinedTerm
83 N3965917b1d9843c6b5983bd67568fbca rdf:first sg:person.01002771274.55
84 rdf:rest rdf:nil
85 N44c69308e0e74c3695478cd724bac03e schema:name nlm_unique_id
86 schema:value 8913398
87 rdf:type schema:PropertyValue
88 N45944e0d3f784cff9c70487f1b580382 rdf:first sg:person.01227605174.54
89 rdf:rest Nc0c76278782945ef947c2e19582971fa
90 N4850499970ce4a93b999788e93623cec schema:affiliation https://www.grid.ac/institutes/grid.267335.6
91 schema:familyName Saegusa
92 schema:givenName Hiroshi
93 rdf:type schema:Person
94 N5b99ea15df1548fbbacb1fd46c59ef82 schema:name Springer Nature - SN SciGraph project
95 rdf:type schema:Organization
96 N5f1f741b8f0f46789a7fca39987fe33f rdf:first sg:person.0623355330.58
97 rdf:rest N3965917b1d9843c6b5983bd67568fbca
98 N61f043d9dff842b594ea0d9197e87e4c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
99 schema:name Positron-Emission Tomography
100 rdf:type schema:DefinedTerm
101 N6ecedf38eb8b4cceba5d2611dee88e31 schema:volumeNumber 22
102 rdf:type schema:PublicationVolume
103 N770cafa363f549bca8c748fc1d0595e8 schema:name dimensions_id
104 schema:value pub.1047655470
105 rdf:type schema:PropertyValue
106 N9685956372a14ed597ac37a46837a900 rdf:first sg:person.01050171230.33
107 rdf:rest N5f1f741b8f0f46789a7fca39987fe33f
108 N984ad687bf3a4326af25616edc33966a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
109 schema:name Image Enhancement
110 rdf:type schema:DefinedTerm
111 N989c11316bcb443cb2aa3c9afad6ac63 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
112 schema:name Imaging, Three-Dimensional
113 rdf:type schema:DefinedTerm
114 N9ec142a621e84d11850d63db893190ee rdf:first sg:person.01113356574.81
115 rdf:rest N45944e0d3f784cff9c70487f1b580382
116 Nad6641b6aec2419f85227759ff425901 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
117 schema:name Lymphoma, Non-Hodgkin
118 rdf:type schema:DefinedTerm
119 Nc0c76278782945ef947c2e19582971fa rdf:first N4850499970ce4a93b999788e93623cec
120 rdf:rest N9685956372a14ed597ac37a46837a900
121 Nc4c2b37de7df4c498d318705e856579e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
122 schema:name Aged
123 rdf:type schema:DefinedTerm
124 Nc4e735331d014488b5f010e74adb396e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
125 schema:name Statistics as Topic
126 rdf:type schema:DefinedTerm
127 Nc826a21496754fe3a5af8bd7b03139fb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
128 schema:name Image Interpretation, Computer-Assisted
129 rdf:type schema:DefinedTerm
130 Nca612e857fcf493c9a0b894d129ac854 schema:name readcube_id
131 schema:value e304918ae72fed1661d9fc633b8baf02c98788dbe3fa3f4be259fdcd3a546a7c
132 rdf:type schema:PropertyValue
133 Ncd68438f0b9b4c91832dc6cc54d75aef rdf:first sg:person.01237563020.08
134 rdf:rest N9ec142a621e84d11850d63db893190ee
135 Nd62a25648d7e42418f18186834ed8129 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
136 schema:name Sensitivity and Specificity
137 rdf:type schema:DefinedTerm
138 Ndb520d834a68455eb491c849bcaab02d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
139 schema:name Humans
140 rdf:type schema:DefinedTerm
141 Ndbd769bb56d64843bfafbeb27117e02f schema:issueNumber 1
142 rdf:type schema:PublicationIssue
143 Nde25d06f1fcf4370b8460165d59d0adb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
144 schema:name Reproducibility of Results
145 rdf:type schema:DefinedTerm
146 Ne1f07b793e424000b8d2986678513b1f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
147 schema:name Middle Aged
148 rdf:type schema:DefinedTerm
149 Ne34cb7709de04abca083e3d85ff80cfb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
150 schema:name Female
151 rdf:type schema:DefinedTerm
152 Nece0ec1fa6c642539d5834f78b09283b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
153 schema:name Male
154 rdf:type schema:DefinedTerm
155 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
156 schema:name Medical and Health Sciences
157 rdf:type schema:DefinedTerm
158 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
159 schema:name Clinical Sciences
160 rdf:type schema:DefinedTerm
161 sg:journal.1099601 schema:issn 0914-7187
162 1864-6433
163 schema:name Annals of Nuclear Medicine
164 rdf:type schema:Periodical
165 sg:person.01002771274.55 schema:affiliation https://www.grid.ac/institutes/grid.267335.6
166 schema:familyName Nishitani
167 schema:givenName Hiromu
168 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01002771274.55
169 rdf:type schema:Person
170 sg:person.01050171230.33 schema:affiliation https://www.grid.ac/institutes/grid.163577.1
171 schema:familyName Kobayashi
172 schema:givenName Masato
173 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01050171230.33
174 rdf:type schema:Person
175 sg:person.01113356574.81 schema:affiliation https://www.grid.ac/institutes/grid.267335.6
176 schema:familyName Otsuka
177 schema:givenName Hideki
178 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01113356574.81
179 rdf:type schema:Person
180 sg:person.01227605174.54 schema:affiliation https://www.grid.ac/institutes/grid.267335.6
181 schema:familyName Morita
182 schema:givenName Naomi
183 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01227605174.54
184 rdf:type schema:Person
185 sg:person.01237563020.08 schema:affiliation https://www.grid.ac/institutes/grid.163577.1
186 schema:familyName Tsujikawa
187 schema:givenName Tetsuya
188 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01237563020.08
189 rdf:type schema:Person
190 sg:person.0623355330.58 schema:affiliation https://www.grid.ac/institutes/grid.163577.1
191 schema:familyName Okazawa
192 schema:givenName Hidehiko
193 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0623355330.58
194 rdf:type schema:Person
195 sg:pub.10.1007/s00259-002-0844-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1018711233
196 https://doi.org/10.1007/s00259-002-0844-z
197 rdf:type schema:CreativeWork
198 sg:pub.10.1007/s00259-002-0924-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012723639
199 https://doi.org/10.1007/s00259-002-0924-0
200 rdf:type schema:CreativeWork
201 sg:pub.10.1007/s00259-005-1784-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040692090
202 https://doi.org/10.1007/s00259-005-1784-1
203 rdf:type schema:CreativeWork
204 sg:pub.10.1007/s00259-006-0224-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015743919
205 https://doi.org/10.1007/s00259-006-0224-1
206 rdf:type schema:CreativeWork
207 sg:pub.10.1007/s002590050275 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034936293
208 https://doi.org/10.1007/s002590050275
209 rdf:type schema:CreativeWork
210 https://app.dimensions.ai/details/publication/pub.1074685202 schema:CreativeWork
211 https://app.dimensions.ai/details/publication/pub.1076887958 schema:CreativeWork
212 https://app.dimensions.ai/details/publication/pub.1077003951 schema:CreativeWork
213 https://app.dimensions.ai/details/publication/pub.1077017453 schema:CreativeWork
214 https://app.dimensions.ai/details/publication/pub.1077017454 schema:CreativeWork
215 https://app.dimensions.ai/details/publication/pub.1077169832 schema:CreativeWork
216 https://app.dimensions.ai/details/publication/pub.1078157689 schema:CreativeWork
217 https://app.dimensions.ai/details/publication/pub.1082422079 schema:CreativeWork
218 https://app.dimensions.ai/details/publication/pub.1083062541 schema:CreativeWork
219 https://app.dimensions.ai/details/publication/pub.1083095803 schema:CreativeWork
220 https://doi.org/10.1023/a:1008312726163 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056303080
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1053/j.semnuclmed.2004.03.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002172422
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1093/annonc/11.suppl_1.s3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032053005
225 rdf:type schema:CreativeWork
226 https://doi.org/10.1093/annonc/mdi200 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041182798
227 rdf:type schema:CreativeWork
228 https://doi.org/10.1148/radiology.190.1.8259386 schema:sameAs https://app.dimensions.ai/details/publication/pub.1082726125
229 rdf:type schema:CreativeWork
230 https://doi.org/10.1148/radiology.203.3.9169707 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083096619
231 rdf:type schema:CreativeWork
232 https://doi.org/10.1148/rg.251045045 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016087028
233 rdf:type schema:CreativeWork
234 https://doi.org/10.1200/jco.2005.12.072 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024927204
235 rdf:type schema:CreativeWork
236 https://www.grid.ac/institutes/grid.163577.1 schema:alternateName University of Fukui
237 schema:name Biomedical Imaging Research Center, University of Fukui, 23-3 Matsuoka-Shimoaizuki, Eiheiji-cho, 910-1193, Fukui, Japan
238 rdf:type schema:Organization
239 https://www.grid.ac/institutes/grid.267335.6 schema:alternateName University of Tokushima
240 schema:name Department of Radiology, The University of Tokushima Graduate School, Tokushima, Japan
241 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...