Does partial volume corrected maximum SUV based on count recovery coefficient in 3D-PET/CT correlate with clinical aggressiveness of non-Hodgkin’s lymphoma? View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2008-01

AUTHORS

Tetsuya Tsujikawa, Hideki Otsuka, Naomi Morita, Hiroshi Saegusa, Masato Kobayashi, Hidehiko Okazawa, Hiromu Nishitani

ABSTRACT

OBJECTIVE: There is much controversy about the correlation between the degree of 2-[(18)F]fluoro-2-deoxy-D: -glucose (FDG) uptake and clinical aggressiveness of non-Hodgkin's lymphoma (NHL). In this study, we investigated whether partial volume corrected FDG uptake based on count recovery coefficient in 3D-positron emission tomography (PET)/computed tomography (CT) correlates with the clinical aggressiveness of NHL and improves diagnostic accuracy. METHODS: Forty-two patients with NHL underwent FDG-PET/CT scans (26 aggressive NHLs and 16 indolent ones). Count recovery curve was obtained using NEMA 2001 body phantom. Scan protocol and reconstructive parameters in the phantom study were the same as those in a clinical scan except for emission time. Relative recovery coefficient (RC) was calculated as RC = A/B (A, maximum pixel count of each hot sphere; B, maximum pixel count of greatest sphere). Partial volume corrected maximum count of standardized uptake value (PVC-SUV) was calculated as PVC-SUV = NC-SUV/RC (NC-SUV: non-corrected maximum count of SUV). Three parameters (NC-SUV, PVC-SUV, and size) between aggressive and indolent NHLs were compared. RESULTS: Significant differences were shown in all parameters between aggressive and indolent NHLs. Means +/- SD of NC-SUV, PVC-SUV, and size was as following: NC-SUV (15.3 +/- 6.9, 8.7 +/- 7.0; P < 0.01), PVC-SUV (18.2 +/- 8.1, 12.7 +/- 7.8; P < 0.05), and size (mm, 32.4 +/- 18.3, 21.9 +/- 10.3; P < 0.05). When an NC-SUV of 9.5 was the cutoff for aggressive NHL, the receiver-operating-characteristic (ROC) analysis correctly identified 21 of 26 aggressive ones. Sensitivity and specificity were 81% each, and the positive and negative predictive values were 88% and 72%, respectively. When a PVCSUV of 11.2 was the cutoff, the ROC analysis revealed 81% sensitivity, 63% specificity, and positive and negative predictive values of 78% and 67%, respectively. At a cutoff for aggressive NHL of a size of 27 mm, the ROC analysis revealed 50% sensitivity, 81% specificity, and positive and negative predictive values of 81% and 50%, respectively. The comparison of area under the curve in ROC analyses indicated that NC-SUV showed the greatest diagnostic accuracy (NC-SUV 0.84, PVC-SUV 0.72, and size 0.69). CONCLUSIONS: Diagnostic accuracy of PVC-SUV was inferior to that of NC-SUV. These results suggest that NC-SUV, which contains information on both size and FDG density, provides better differentiation between aggressive and indolent NHLs than PVC-SUV. More... »

PAGES

23-30

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s12149-007-0084-1

DOI

http://dx.doi.org/10.1007/s12149-007-0084-1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1047655470

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/18250984


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Clinical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Algorithms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Image Enhancement", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Image Interpretation, Computer-Assisted", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Imaging, Three-Dimensional", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Lymphoma, Non-Hodgkin", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Positron-Emission Tomography", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Reproducibility of Results", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sensitivity and Specificity", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Statistics as Topic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Subtraction Technique", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Tomography, X-Ray Computed", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Fukui", 
          "id": "https://www.grid.ac/institutes/grid.163577.1", 
          "name": [
            "Biomedical Imaging Research Center, University of Fukui, 23-3 Matsuoka-Shimoaizuki, Eiheiji-cho, 910-1193, Fukui, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tsujikawa", 
        "givenName": "Tetsuya", 
        "id": "sg:person.01237563020.08", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01237563020.08"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Tokushima", 
          "id": "https://www.grid.ac/institutes/grid.267335.6", 
          "name": [
            "Department of Radiology, The University of Tokushima Graduate School, Tokushima, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Otsuka", 
        "givenName": "Hideki", 
        "id": "sg:person.01113356574.81", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01113356574.81"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Tokushima", 
          "id": "https://www.grid.ac/institutes/grid.267335.6", 
          "name": [
            "Department of Radiology, The University of Tokushima Graduate School, Tokushima, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Morita", 
        "givenName": "Naomi", 
        "id": "sg:person.01227605174.54", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01227605174.54"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Tokushima", 
          "id": "https://www.grid.ac/institutes/grid.267335.6", 
          "name": [
            "Department of Radiology, The University of Tokushima Graduate School, Tokushima, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Saegusa", 
        "givenName": "Hiroshi", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Fukui", 
          "id": "https://www.grid.ac/institutes/grid.163577.1", 
          "name": [
            "Biomedical Imaging Research Center, University of Fukui, 23-3 Matsuoka-Shimoaizuki, Eiheiji-cho, 910-1193, Fukui, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kobayashi", 
        "givenName": "Masato", 
        "id": "sg:person.01050171230.33", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01050171230.33"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Fukui", 
          "id": "https://www.grid.ac/institutes/grid.163577.1", 
          "name": [
            "Biomedical Imaging Research Center, University of Fukui, 23-3 Matsuoka-Shimoaizuki, Eiheiji-cho, 910-1193, Fukui, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Okazawa", 
        "givenName": "Hidehiko", 
        "id": "sg:person.0623355330.58", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0623355330.58"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Tokushima", 
          "id": "https://www.grid.ac/institutes/grid.267335.6", 
          "name": [
            "Department of Radiology, The University of Tokushima Graduate School, Tokushima, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nishitani", 
        "givenName": "Hiromu", 
        "id": "sg:person.01002771274.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01002771274.55"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1053/j.semnuclmed.2004.03.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002172422"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00259-002-0924-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012723639", 
          "https://doi.org/10.1007/s00259-002-0924-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00259-006-0224-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015743919", 
          "https://doi.org/10.1007/s00259-006-0224-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/rg.251045045", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016087028"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00259-002-0844-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018711233", 
          "https://doi.org/10.1007/s00259-002-0844-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1200/jco.2005.12.072", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024927204"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/annonc/11.suppl_1.s3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032053005"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s002590050275", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034936293", 
          "https://doi.org/10.1007/s002590050275"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00259-005-1784-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040692090", 
          "https://doi.org/10.1007/s00259-005-1784-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00259-005-1784-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040692090", 
          "https://doi.org/10.1007/s00259-005-1784-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00259-005-1784-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040692090", 
          "https://doi.org/10.1007/s00259-005-1784-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/annonc/mdi200", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041182798"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1023/a:1008312726163", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056303080"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1074685202", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1076887958", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1077003951", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1077017453", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1077017454", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1077169832", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1078157689", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1082422079", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiology.190.1.8259386", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1082726125"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1083062541", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1083095803", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiology.203.3.9169707", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083096619"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2008-01", 
    "datePublishedReg": "2008-01-01", 
    "description": "OBJECTIVE: There is much controversy about the correlation between the degree of 2-[(18)F]fluoro-2-deoxy-D: -glucose (FDG) uptake and clinical aggressiveness of non-Hodgkin's lymphoma (NHL). In this study, we investigated whether partial volume corrected FDG uptake based on count recovery coefficient in 3D-positron emission tomography (PET)/computed tomography (CT) correlates with the clinical aggressiveness of NHL and improves diagnostic accuracy.\nMETHODS: Forty-two patients with NHL underwent FDG-PET/CT scans (26 aggressive NHLs and 16 indolent ones). Count recovery curve was obtained using NEMA 2001 body phantom. Scan protocol and reconstructive parameters in the phantom study were the same as those in a clinical scan except for emission time. Relative recovery coefficient (RC) was calculated as RC = A/B (A, maximum pixel count of each hot sphere; B, maximum pixel count of greatest sphere). Partial volume corrected maximum count of standardized uptake value (PVC-SUV) was calculated as PVC-SUV = NC-SUV/RC (NC-SUV: non-corrected maximum count of SUV). Three parameters (NC-SUV, PVC-SUV, and size) between aggressive and indolent NHLs were compared.\nRESULTS: Significant differences were shown in all parameters between aggressive and indolent NHLs. Means +/- SD of NC-SUV, PVC-SUV, and size was as following: NC-SUV (15.3 +/- 6.9, 8.7 +/- 7.0; P < 0.01), PVC-SUV (18.2 +/- 8.1, 12.7 +/- 7.8; P < 0.05), and size (mm, 32.4 +/- 18.3, 21.9 +/- 10.3; P < 0.05). When an NC-SUV of 9.5 was the cutoff for aggressive NHL, the receiver-operating-characteristic (ROC) analysis correctly identified 21 of 26 aggressive ones. Sensitivity and specificity were 81% each, and the positive and negative predictive values were 88% and 72%, respectively. When a PVCSUV of 11.2 was the cutoff, the ROC analysis revealed 81% sensitivity, 63% specificity, and positive and negative predictive values of 78% and 67%, respectively. At a cutoff for aggressive NHL of a size of 27 mm, the ROC analysis revealed 50% sensitivity, 81% specificity, and positive and negative predictive values of 81% and 50%, respectively. The comparison of area under the curve in ROC analyses indicated that NC-SUV showed the greatest diagnostic accuracy (NC-SUV 0.84, PVC-SUV 0.72, and size 0.69).\nCONCLUSIONS: Diagnostic accuracy of PVC-SUV was inferior to that of NC-SUV. These results suggest that NC-SUV, which contains information on both size and FDG density, provides better differentiation between aggressive and indolent NHLs than PVC-SUV.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s12149-007-0084-1", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1099601", 
        "issn": [
          "0914-7187", 
          "1864-6433"
        ], 
        "name": "Annals of Nuclear Medicine", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "22"
      }
    ], 
    "name": "Does partial volume corrected maximum SUV based on count recovery coefficient in 3D-PET/CT correlate with clinical aggressiveness of non-Hodgkin\u2019s lymphoma?", 
    "pagination": "23-30", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "e304918ae72fed1661d9fc633b8baf02c98788dbe3fa3f4be259fdcd3a546a7c"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "18250984"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "8913398"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s12149-007-0084-1"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1047655470"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s12149-007-0084-1", 
      "https://app.dimensions.ai/details/publication/pub.1047655470"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T17:34", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8672_00000524.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs12149-007-0084-1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12149-007-0084-1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12149-007-0084-1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12149-007-0084-1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12149-007-0084-1'


 

This table displays all metadata directly associated to this object as RDF triples.

241 TRIPLES      21 PREDICATES      68 URIs      37 LITERALS      25 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s12149-007-0084-1 schema:about N0f4bf9cce6a140329998b68385306151
2 N1b8055610c374a3abf7bc52091530c8b
3 N3362be431ffd401abf1a95d5eeb178fa
4 N4725da96eb7745d88dc1bd06db8eaa05
5 N4d264b2f2cc547e4ac7c5fec380e55ce
6 N4ff3591aab9942d0ae853cf40b158e87
7 N5fe42783a00c4c1793397c836eab9556
8 N6a58e2898ee14d7ab9d4b93186eecbe3
9 N6ed1f3a427de4412bcf7a62249fe710b
10 N6f0c48591a0b4a1a8b5ec630e49a0bbf
11 N882c429ecb9c4b71860b1cd80713de0c
12 N957e4c1e65a848f7be253382b59e3330
13 N9b4a3875b3d84a91999ffad73e1296b4
14 Ncf679b3e839a4246aa0ef321db5c2e9a
15 Nddebcce8fe524a8a95a146d803633f1f
16 Ne0bcc4ee72f345c088d0125030291e10
17 anzsrc-for:11
18 anzsrc-for:1103
19 schema:author N6d52fb2cc6864927acc03030fde19d2b
20 schema:citation sg:pub.10.1007/s00259-002-0844-z
21 sg:pub.10.1007/s00259-002-0924-0
22 sg:pub.10.1007/s00259-005-1784-1
23 sg:pub.10.1007/s00259-006-0224-1
24 sg:pub.10.1007/s002590050275
25 https://app.dimensions.ai/details/publication/pub.1074685202
26 https://app.dimensions.ai/details/publication/pub.1076887958
27 https://app.dimensions.ai/details/publication/pub.1077003951
28 https://app.dimensions.ai/details/publication/pub.1077017453
29 https://app.dimensions.ai/details/publication/pub.1077017454
30 https://app.dimensions.ai/details/publication/pub.1077169832
31 https://app.dimensions.ai/details/publication/pub.1078157689
32 https://app.dimensions.ai/details/publication/pub.1082422079
33 https://app.dimensions.ai/details/publication/pub.1083062541
34 https://app.dimensions.ai/details/publication/pub.1083095803
35 https://doi.org/10.1023/a:1008312726163
36 https://doi.org/10.1053/j.semnuclmed.2004.03.002
37 https://doi.org/10.1093/annonc/11.suppl_1.s3
38 https://doi.org/10.1093/annonc/mdi200
39 https://doi.org/10.1148/radiology.190.1.8259386
40 https://doi.org/10.1148/radiology.203.3.9169707
41 https://doi.org/10.1148/rg.251045045
42 https://doi.org/10.1200/jco.2005.12.072
43 schema:datePublished 2008-01
44 schema:datePublishedReg 2008-01-01
45 schema:description OBJECTIVE: There is much controversy about the correlation between the degree of 2-[(18)F]fluoro-2-deoxy-D: -glucose (FDG) uptake and clinical aggressiveness of non-Hodgkin's lymphoma (NHL). In this study, we investigated whether partial volume corrected FDG uptake based on count recovery coefficient in 3D-positron emission tomography (PET)/computed tomography (CT) correlates with the clinical aggressiveness of NHL and improves diagnostic accuracy. METHODS: Forty-two patients with NHL underwent FDG-PET/CT scans (26 aggressive NHLs and 16 indolent ones). Count recovery curve was obtained using NEMA 2001 body phantom. Scan protocol and reconstructive parameters in the phantom study were the same as those in a clinical scan except for emission time. Relative recovery coefficient (RC) was calculated as RC = A/B (A, maximum pixel count of each hot sphere; B, maximum pixel count of greatest sphere). Partial volume corrected maximum count of standardized uptake value (PVC-SUV) was calculated as PVC-SUV = NC-SUV/RC (NC-SUV: non-corrected maximum count of SUV). Three parameters (NC-SUV, PVC-SUV, and size) between aggressive and indolent NHLs were compared. RESULTS: Significant differences were shown in all parameters between aggressive and indolent NHLs. Means +/- SD of NC-SUV, PVC-SUV, and size was as following: NC-SUV (15.3 +/- 6.9, 8.7 +/- 7.0; P < 0.01), PVC-SUV (18.2 +/- 8.1, 12.7 +/- 7.8; P < 0.05), and size (mm, 32.4 +/- 18.3, 21.9 +/- 10.3; P < 0.05). When an NC-SUV of 9.5 was the cutoff for aggressive NHL, the receiver-operating-characteristic (ROC) analysis correctly identified 21 of 26 aggressive ones. Sensitivity and specificity were 81% each, and the positive and negative predictive values were 88% and 72%, respectively. When a PVCSUV of 11.2 was the cutoff, the ROC analysis revealed 81% sensitivity, 63% specificity, and positive and negative predictive values of 78% and 67%, respectively. At a cutoff for aggressive NHL of a size of 27 mm, the ROC analysis revealed 50% sensitivity, 81% specificity, and positive and negative predictive values of 81% and 50%, respectively. The comparison of area under the curve in ROC analyses indicated that NC-SUV showed the greatest diagnostic accuracy (NC-SUV 0.84, PVC-SUV 0.72, and size 0.69). CONCLUSIONS: Diagnostic accuracy of PVC-SUV was inferior to that of NC-SUV. These results suggest that NC-SUV, which contains information on both size and FDG density, provides better differentiation between aggressive and indolent NHLs than PVC-SUV.
46 schema:genre research_article
47 schema:inLanguage en
48 schema:isAccessibleForFree false
49 schema:isPartOf N376fdfc542cd431e8570dde0ddc06cf3
50 Nb06f5de54b8b4b7db3504582e020eaaf
51 sg:journal.1099601
52 schema:name Does partial volume corrected maximum SUV based on count recovery coefficient in 3D-PET/CT correlate with clinical aggressiveness of non-Hodgkin’s lymphoma?
53 schema:pagination 23-30
54 schema:productId N0040c121de7c4308af6dc5289d83c799
55 N083a81ff9d094b07af14fb10381ffde0
56 N4d2908b0724544c388ea28c2f551d92e
57 N77c8ce9bf7bb4228b656faf8f5323851
58 Nad77a1aa9927440cbd3638d2917cfbd0
59 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047655470
60 https://doi.org/10.1007/s12149-007-0084-1
61 schema:sdDatePublished 2019-04-10T17:34
62 schema:sdLicense https://scigraph.springernature.com/explorer/license/
63 schema:sdPublisher Ne08a6979c15f4a67b4492831f7f783aa
64 schema:url http://link.springer.com/10.1007%2Fs12149-007-0084-1
65 sgo:license sg:explorer/license/
66 sgo:sdDataset articles
67 rdf:type schema:ScholarlyArticle
68 N0040c121de7c4308af6dc5289d83c799 schema:name doi
69 schema:value 10.1007/s12149-007-0084-1
70 rdf:type schema:PropertyValue
71 N073f9cafc7834c05b162dec12f6f70eb rdf:first Nb9aa45844b324d8db1c99f193a152c65
72 rdf:rest N8b32ef48ea724c269c23b156df0c2ed4
73 N083a81ff9d094b07af14fb10381ffde0 schema:name dimensions_id
74 schema:value pub.1047655470
75 rdf:type schema:PropertyValue
76 N0f4bf9cce6a140329998b68385306151 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
77 schema:name Statistics as Topic
78 rdf:type schema:DefinedTerm
79 N1b8055610c374a3abf7bc52091530c8b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
80 schema:name Tomography, X-Ray Computed
81 rdf:type schema:DefinedTerm
82 N294b9cee9b054f9389bb632dfa7caa72 rdf:first sg:person.01113356574.81
83 rdf:rest Nc4c13e50fb1047aca183378cb7c7dc1f
84 N3362be431ffd401abf1a95d5eeb178fa schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
85 schema:name Image Interpretation, Computer-Assisted
86 rdf:type schema:DefinedTerm
87 N376fdfc542cd431e8570dde0ddc06cf3 schema:issueNumber 1
88 rdf:type schema:PublicationIssue
89 N4725da96eb7745d88dc1bd06db8eaa05 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
90 schema:name Male
91 rdf:type schema:DefinedTerm
92 N4d264b2f2cc547e4ac7c5fec380e55ce schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
93 schema:name Female
94 rdf:type schema:DefinedTerm
95 N4d2908b0724544c388ea28c2f551d92e schema:name readcube_id
96 schema:value e304918ae72fed1661d9fc633b8baf02c98788dbe3fa3f4be259fdcd3a546a7c
97 rdf:type schema:PropertyValue
98 N4ff3591aab9942d0ae853cf40b158e87 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
99 schema:name Imaging, Three-Dimensional
100 rdf:type schema:DefinedTerm
101 N5e112bd90c2047f88f939a6089725cd0 rdf:first sg:person.01002771274.55
102 rdf:rest rdf:nil
103 N5fe42783a00c4c1793397c836eab9556 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
104 schema:name Image Enhancement
105 rdf:type schema:DefinedTerm
106 N616e4f827f65452f8cd6d518c809978b rdf:first sg:person.0623355330.58
107 rdf:rest N5e112bd90c2047f88f939a6089725cd0
108 N6a58e2898ee14d7ab9d4b93186eecbe3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
109 schema:name Sensitivity and Specificity
110 rdf:type schema:DefinedTerm
111 N6d52fb2cc6864927acc03030fde19d2b rdf:first sg:person.01237563020.08
112 rdf:rest N294b9cee9b054f9389bb632dfa7caa72
113 N6ed1f3a427de4412bcf7a62249fe710b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
114 schema:name Positron-Emission Tomography
115 rdf:type schema:DefinedTerm
116 N6f0c48591a0b4a1a8b5ec630e49a0bbf schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
117 schema:name Middle Aged
118 rdf:type schema:DefinedTerm
119 N77c8ce9bf7bb4228b656faf8f5323851 schema:name nlm_unique_id
120 schema:value 8913398
121 rdf:type schema:PropertyValue
122 N882c429ecb9c4b71860b1cd80713de0c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
123 schema:name Reproducibility of Results
124 rdf:type schema:DefinedTerm
125 N8b32ef48ea724c269c23b156df0c2ed4 rdf:first sg:person.01050171230.33
126 rdf:rest N616e4f827f65452f8cd6d518c809978b
127 N957e4c1e65a848f7be253382b59e3330 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
128 schema:name Subtraction Technique
129 rdf:type schema:DefinedTerm
130 N9b4a3875b3d84a91999ffad73e1296b4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
131 schema:name Algorithms
132 rdf:type schema:DefinedTerm
133 Nad77a1aa9927440cbd3638d2917cfbd0 schema:name pubmed_id
134 schema:value 18250984
135 rdf:type schema:PropertyValue
136 Nb06f5de54b8b4b7db3504582e020eaaf schema:volumeNumber 22
137 rdf:type schema:PublicationVolume
138 Nb9aa45844b324d8db1c99f193a152c65 schema:affiliation https://www.grid.ac/institutes/grid.267335.6
139 schema:familyName Saegusa
140 schema:givenName Hiroshi
141 rdf:type schema:Person
142 Nc4c13e50fb1047aca183378cb7c7dc1f rdf:first sg:person.01227605174.54
143 rdf:rest N073f9cafc7834c05b162dec12f6f70eb
144 Ncf679b3e839a4246aa0ef321db5c2e9a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
145 schema:name Humans
146 rdf:type schema:DefinedTerm
147 Nddebcce8fe524a8a95a146d803633f1f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
148 schema:name Aged
149 rdf:type schema:DefinedTerm
150 Ne08a6979c15f4a67b4492831f7f783aa schema:name Springer Nature - SN SciGraph project
151 rdf:type schema:Organization
152 Ne0bcc4ee72f345c088d0125030291e10 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
153 schema:name Lymphoma, Non-Hodgkin
154 rdf:type schema:DefinedTerm
155 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
156 schema:name Medical and Health Sciences
157 rdf:type schema:DefinedTerm
158 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
159 schema:name Clinical Sciences
160 rdf:type schema:DefinedTerm
161 sg:journal.1099601 schema:issn 0914-7187
162 1864-6433
163 schema:name Annals of Nuclear Medicine
164 rdf:type schema:Periodical
165 sg:person.01002771274.55 schema:affiliation https://www.grid.ac/institutes/grid.267335.6
166 schema:familyName Nishitani
167 schema:givenName Hiromu
168 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01002771274.55
169 rdf:type schema:Person
170 sg:person.01050171230.33 schema:affiliation https://www.grid.ac/institutes/grid.163577.1
171 schema:familyName Kobayashi
172 schema:givenName Masato
173 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01050171230.33
174 rdf:type schema:Person
175 sg:person.01113356574.81 schema:affiliation https://www.grid.ac/institutes/grid.267335.6
176 schema:familyName Otsuka
177 schema:givenName Hideki
178 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01113356574.81
179 rdf:type schema:Person
180 sg:person.01227605174.54 schema:affiliation https://www.grid.ac/institutes/grid.267335.6
181 schema:familyName Morita
182 schema:givenName Naomi
183 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01227605174.54
184 rdf:type schema:Person
185 sg:person.01237563020.08 schema:affiliation https://www.grid.ac/institutes/grid.163577.1
186 schema:familyName Tsujikawa
187 schema:givenName Tetsuya
188 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01237563020.08
189 rdf:type schema:Person
190 sg:person.0623355330.58 schema:affiliation https://www.grid.ac/institutes/grid.163577.1
191 schema:familyName Okazawa
192 schema:givenName Hidehiko
193 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0623355330.58
194 rdf:type schema:Person
195 sg:pub.10.1007/s00259-002-0844-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1018711233
196 https://doi.org/10.1007/s00259-002-0844-z
197 rdf:type schema:CreativeWork
198 sg:pub.10.1007/s00259-002-0924-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012723639
199 https://doi.org/10.1007/s00259-002-0924-0
200 rdf:type schema:CreativeWork
201 sg:pub.10.1007/s00259-005-1784-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040692090
202 https://doi.org/10.1007/s00259-005-1784-1
203 rdf:type schema:CreativeWork
204 sg:pub.10.1007/s00259-006-0224-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015743919
205 https://doi.org/10.1007/s00259-006-0224-1
206 rdf:type schema:CreativeWork
207 sg:pub.10.1007/s002590050275 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034936293
208 https://doi.org/10.1007/s002590050275
209 rdf:type schema:CreativeWork
210 https://app.dimensions.ai/details/publication/pub.1074685202 schema:CreativeWork
211 https://app.dimensions.ai/details/publication/pub.1076887958 schema:CreativeWork
212 https://app.dimensions.ai/details/publication/pub.1077003951 schema:CreativeWork
213 https://app.dimensions.ai/details/publication/pub.1077017453 schema:CreativeWork
214 https://app.dimensions.ai/details/publication/pub.1077017454 schema:CreativeWork
215 https://app.dimensions.ai/details/publication/pub.1077169832 schema:CreativeWork
216 https://app.dimensions.ai/details/publication/pub.1078157689 schema:CreativeWork
217 https://app.dimensions.ai/details/publication/pub.1082422079 schema:CreativeWork
218 https://app.dimensions.ai/details/publication/pub.1083062541 schema:CreativeWork
219 https://app.dimensions.ai/details/publication/pub.1083095803 schema:CreativeWork
220 https://doi.org/10.1023/a:1008312726163 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056303080
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1053/j.semnuclmed.2004.03.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002172422
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1093/annonc/11.suppl_1.s3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032053005
225 rdf:type schema:CreativeWork
226 https://doi.org/10.1093/annonc/mdi200 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041182798
227 rdf:type schema:CreativeWork
228 https://doi.org/10.1148/radiology.190.1.8259386 schema:sameAs https://app.dimensions.ai/details/publication/pub.1082726125
229 rdf:type schema:CreativeWork
230 https://doi.org/10.1148/radiology.203.3.9169707 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083096619
231 rdf:type schema:CreativeWork
232 https://doi.org/10.1148/rg.251045045 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016087028
233 rdf:type schema:CreativeWork
234 https://doi.org/10.1200/jco.2005.12.072 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024927204
235 rdf:type schema:CreativeWork
236 https://www.grid.ac/institutes/grid.163577.1 schema:alternateName University of Fukui
237 schema:name Biomedical Imaging Research Center, University of Fukui, 23-3 Matsuoka-Shimoaizuki, Eiheiji-cho, 910-1193, Fukui, Japan
238 rdf:type schema:Organization
239 https://www.grid.ac/institutes/grid.267335.6 schema:alternateName University of Tokushima
240 schema:name Department of Radiology, The University of Tokushima Graduate School, Tokushima, Japan
241 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...