Development of a machine vision system using the support vector machine regression (SVR) algorithm for the online prediction of iron ... View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-11-09

AUTHORS

Ashok Kumar Patel, Snehamoy Chatterjee, Amit Kumar Gorai

ABSTRACT

The mineral industry needs fast and efficient mineral quality monitoring equipment, and a machine vision system could be a suitable alternative to the traditional quality monitoring system. This study attempts to develop a machine vision-based expert system using support vector machine regression (SVR) model for the online quality monitoring of iron ores (hereafter known as ore grades). The images of the ore samples were captured during the run of condition on the fabricated conveyor belt transportation system. A total of 280 image features were extracted from each of the selected captured images in order to evaluate its suitability in object identification. A sequential forward floating selection (SFFS) algorithm was developed using the support vector machine regression (SVR) as a criterion function for selecting the optimum set of image features. The optimised feature subset was used as input, and the iron ore grade value was used as an output parameter for the model development. The grade of iron ore corresponding to each captured image was analysed in the laboratory using X-Ray Fluorescence (XRF) for grade estimation. The model was trained using 70% of the dataset and tested using 30% of the sample dataset. The model performance was evaluated using a test dataset with the five indices viz. the sum of squared errors (SSE), root mean squared error (RMSE), normalised mean squared error (NMSE), R-square (R2) and bias. The SSE, RMSE, NMSE and bias values of the model were obtained as 537.5367, 5.9863, 0.0063, and 0.8875, respectively. The R2 value of the model was obtained as 0.9402. The results indicate that the model performs satisfactorily for the iron ore grade prediction from the image collected in a controlled laboratory environment. The performance of the proposed model was compared with other models used in the previous studies. It was observed that the proposed model performs better than the other studied models (Gaussian Process Regression and Artificial Neural Network). More... »

PAGES

1-14

References to SciGraph publications

  • 2001-07. Face Recognition Using the Discrete Cosine Transform in INTERNATIONAL JOURNAL OF COMPUTER VISION
  • 2008-12. Color image segmentation in HSI space for automotive applications in JOURNAL OF REAL-TIME IMAGE PROCESSING
  • 2004-08. A tutorial on support vector regression in STATISTICS AND COMPUTING
  • 2014. Application of Fourier Transforms in Classification of Medical Images in HUMAN-COMPUTER SYSTEMS INTERACTION: BACKGROUNDS AND APPLICATIONS 3
  • 2017-03. Development of machine vision-based ore classification model using support vector machine (SVM) algorithm in ARABIAN JOURNAL OF GEOSCIENCES
  • 2013-07. Vision-based rock-type classification of limestone using multi-class support vector machine in APPLIED INTELLIGENCE
  • 1995. The Nature of Statistical Learning Theory in NONE
  • 2018-08. Development of an expert system for iron ore classification in ARABIAN JOURNAL OF GEOSCIENCES
  • 1995-09. Support-vector networks in MACHINE LEARNING
  • 1997. Skin-color modeling and adaptation in COMPUTER VISION — ACCV'98
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s12145-018-0370-6

    DOI

    http://dx.doi.org/10.1007/s12145-018-0370-6

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1109791747


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Artificial Intelligence and Image Processing", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Koneru Lakshmaiah Education Foundation", 
              "id": "https://www.grid.ac/institutes/grid.449504.8", 
              "name": [
                "Department of Computer Science and Engineering, K L University, Vaddeswaram, 522502, Guntur, Andhra Pradesh, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Patel", 
            "givenName": "Ashok Kumar", 
            "id": "sg:person.011060220547.23", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011060220547.23"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Michigan Technological University", 
              "id": "https://www.grid.ac/institutes/grid.259979.9", 
              "name": [
                "Department of Geological and Mining Engineering and Sciences, Michigan Technological University, 49931, Houghton, MI, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Chatterjee", 
            "givenName": "Snehamoy", 
            "id": "sg:person.012453161547.50", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012453161547.50"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "Department of Mining Engineering, National Institute of Technology, 769008, Rourkela, Orissa, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Gorai", 
            "givenName": "Amit Kumar", 
            "id": "sg:person.01120463614.01", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01120463614.01"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1023/b:stco.0000035301.49549.88", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000991887", 
              "https://doi.org/10.1023/b:stco.0000035301.49549.88"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11554-008-0078-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008908594", 
              "https://doi.org/10.1007/s11554-008-0078-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.compag.2016.10.005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009203411"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.procs.2015.08.092", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012097823"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2174/138920209789177629", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013873483"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-319-08491-6_16", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015289859", 
              "https://doi.org/10.1007/978-3-319-08491-6_16"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.atmosenv.2016.01.007", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015335250"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.minpro.2015.09.015", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015680106"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/1742-6596/332/1/012041", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015996746"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.mineng.2007.04.009", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018079478"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/bti171", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019379574"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.trc.2013.10.012", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022642010"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.media.2011.05.006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024619044"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00994018", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025150743", 
              "https://doi.org/10.1007/bf00994018"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.4236/ijis.2013.31002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026258993"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.eswa.2015.01.030", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026501622"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4757-2440-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027312764", 
              "https://doi.org/10.1007/978-1-4757-2440-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4757-2440-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027312764", 
              "https://doi.org/10.1007/978-1-4757-2440-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1179/174328506x109130", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027837804"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.engappai.2010.11.009", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029828332"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.cviu.2007.09.009", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032836826"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.eswa.2012.01.104", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032982927"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.compind.2009.10.003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033231833"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s1077-3142(03)00025-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033756194"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s1077-3142(03)00025-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033756194"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.minpro.2011.07.008", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033823120"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.engappai.2012.09.010", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034306334"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s1076-5670(07)00402-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037095491"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.mineng.2008.12.005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037105699"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.mineng.2005.03.003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037161485"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10489-012-0391-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037164880", 
              "https://doi.org/10.1007/s10489-012-0391-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-63931-4_278", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037753890", 
              "https://doi.org/10.1007/3-540-63931-4_278"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ijleo.2013.10.094", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038830896"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.dsp.2009.10.008", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040902331"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.visres.2006.09.005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040943792"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.cej.2012.07.081", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041123011"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.mineng.2004.05.010", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041281084"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.gsf.2014.10.005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041726254"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1011183429707", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042965240", 
              "https://doi.org/10.1023/a:1011183429707"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.minpro.2010.04.005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043928571"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.compchemeng.2012.03.004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048160676"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.patrec.2008.03.008", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048361692"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1155/2012/912852", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048387753"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0892-6875(94)00100-q", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049322561"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.apm.2013.05.016", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049723835"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0167-8655(94)90127-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052101887"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0167-8655(94)90127-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052101887"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jvcir.2011.11.002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052159889"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1049/cje.2016.05.013", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1056747896"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1049/ip-vis:20050810", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1056861139"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/mis.2005.105", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061405785"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tsmcb.2005.854499", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061796526"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12517-017-2909-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084035377", 
              "https://doi.org/10.1007/s12517-017-2909-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12517-017-2909-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084035377", 
              "https://doi.org/10.1007/s12517-017-2909-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/icsss.2013.6623006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1093521354"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/ijcnn.2000.859420", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094185884"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/ehb.2013.6707272", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094760253"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/roman.2004.1374762", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1095008309"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/daas.2014.6842451", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1095335837"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/iecon.2010.5675075", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1095521894"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/fcv.2015.7103746", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1095622836"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/iccp.2008.4648350", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1095680756"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12517-018-3733-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1105856659", 
              "https://doi.org/10.1007/s12517-018-3733-x"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2018-11-09", 
        "datePublishedReg": "2018-11-09", 
        "description": "The mineral industry needs fast and efficient mineral quality monitoring equipment, and a machine vision system could be a suitable alternative to the traditional quality monitoring system. This study attempts to develop a machine vision-based expert system using support vector machine regression (SVR) model for the online quality monitoring of iron ores (hereafter known as ore grades). The images of the ore samples were captured during the run of condition on the fabricated conveyor belt transportation system. A total of 280 image features were extracted from each of the selected captured images in order to evaluate its suitability in object identification. A sequential forward floating selection (SFFS) algorithm was developed using the support vector machine regression (SVR) as a criterion function for selecting the optimum set of image features. The optimised feature subset was used as input, and the iron ore grade value was used as an output parameter for the model development. The grade of iron ore corresponding to each captured image was analysed in the laboratory using X-Ray Fluorescence (XRF) for grade estimation. The model was trained using 70% of the dataset and tested using 30% of the sample dataset. The model performance was evaluated using a test dataset with the five indices viz. the sum of squared errors (SSE), root mean squared error (RMSE), normalised mean squared error (NMSE), R-square (R2) and bias. The SSE, RMSE, NMSE and bias values of the model were obtained as 537.5367, 5.9863, 0.0063, and 0.8875, respectively. The R2 value of the model was obtained as 0.9402. The results indicate that the model performs satisfactorily for the iron ore grade prediction from the image collected in a controlled laboratory environment. The performance of the proposed model was compared with other models used in the previous studies. It was observed that the proposed model performs better than the other studied models (Gaussian Process Regression and Artificial Neural Network).", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s12145-018-0370-6", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1049211", 
            "issn": [
              "1865-0473", 
              "1865-0481"
            ], 
            "name": "Earth Science Informatics", 
            "type": "Periodical"
          }
        ], 
        "name": "Development of a machine vision system using the support vector machine regression (SVR) algorithm for the online prediction of iron ore grades", 
        "pagination": "1-14", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "4ce4d77f2a617f7e9dcd72e6d0fe18446f99164d2a7ba805af8a9dd911c14ad7"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s12145-018-0370-6"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1109791747"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s12145-018-0370-6", 
          "https://app.dimensions.ai/details/publication/pub.1109791747"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T16:56", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8669_00000610.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1007%2Fs12145-018-0370-6"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12145-018-0370-6'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12145-018-0370-6'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12145-018-0370-6'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12145-018-0370-6'


     

    This table displays all metadata directly associated to this object as RDF triples.

    261 TRIPLES      21 PREDICATES      83 URIs      16 LITERALS      5 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s12145-018-0370-6 schema:about anzsrc-for:08
    2 anzsrc-for:0801
    3 schema:author N21871ccb32164426b6dc82baf8d1aedc
    4 schema:citation sg:pub.10.1007/3-540-63931-4_278
    5 sg:pub.10.1007/978-1-4757-2440-0
    6 sg:pub.10.1007/978-3-319-08491-6_16
    7 sg:pub.10.1007/bf00994018
    8 sg:pub.10.1007/s10489-012-0391-7
    9 sg:pub.10.1007/s11554-008-0078-9
    10 sg:pub.10.1007/s12517-017-2909-0
    11 sg:pub.10.1007/s12517-018-3733-x
    12 sg:pub.10.1023/a:1011183429707
    13 sg:pub.10.1023/b:stco.0000035301.49549.88
    14 https://doi.org/10.1016/0167-8655(94)90127-9
    15 https://doi.org/10.1016/0892-6875(94)00100-q
    16 https://doi.org/10.1016/j.apm.2013.05.016
    17 https://doi.org/10.1016/j.atmosenv.2016.01.007
    18 https://doi.org/10.1016/j.cej.2012.07.081
    19 https://doi.org/10.1016/j.compag.2016.10.005
    20 https://doi.org/10.1016/j.compchemeng.2012.03.004
    21 https://doi.org/10.1016/j.compind.2009.10.003
    22 https://doi.org/10.1016/j.cviu.2007.09.009
    23 https://doi.org/10.1016/j.dsp.2009.10.008
    24 https://doi.org/10.1016/j.engappai.2010.11.009
    25 https://doi.org/10.1016/j.engappai.2012.09.010
    26 https://doi.org/10.1016/j.eswa.2012.01.104
    27 https://doi.org/10.1016/j.eswa.2015.01.030
    28 https://doi.org/10.1016/j.gsf.2014.10.005
    29 https://doi.org/10.1016/j.ijleo.2013.10.094
    30 https://doi.org/10.1016/j.jvcir.2011.11.002
    31 https://doi.org/10.1016/j.media.2011.05.006
    32 https://doi.org/10.1016/j.mineng.2004.05.010
    33 https://doi.org/10.1016/j.mineng.2005.03.003
    34 https://doi.org/10.1016/j.mineng.2007.04.009
    35 https://doi.org/10.1016/j.mineng.2008.12.005
    36 https://doi.org/10.1016/j.minpro.2010.04.005
    37 https://doi.org/10.1016/j.minpro.2011.07.008
    38 https://doi.org/10.1016/j.minpro.2015.09.015
    39 https://doi.org/10.1016/j.patrec.2008.03.008
    40 https://doi.org/10.1016/j.procs.2015.08.092
    41 https://doi.org/10.1016/j.trc.2013.10.012
    42 https://doi.org/10.1016/j.visres.2006.09.005
    43 https://doi.org/10.1016/s1076-5670(07)00402-8
    44 https://doi.org/10.1016/s1077-3142(03)00025-0
    45 https://doi.org/10.1049/cje.2016.05.013
    46 https://doi.org/10.1049/ip-vis:20050810
    47 https://doi.org/10.1088/1742-6596/332/1/012041
    48 https://doi.org/10.1093/bioinformatics/bti171
    49 https://doi.org/10.1109/daas.2014.6842451
    50 https://doi.org/10.1109/ehb.2013.6707272
    51 https://doi.org/10.1109/fcv.2015.7103746
    52 https://doi.org/10.1109/iccp.2008.4648350
    53 https://doi.org/10.1109/icsss.2013.6623006
    54 https://doi.org/10.1109/iecon.2010.5675075
    55 https://doi.org/10.1109/ijcnn.2000.859420
    56 https://doi.org/10.1109/mis.2005.105
    57 https://doi.org/10.1109/roman.2004.1374762
    58 https://doi.org/10.1109/tsmcb.2005.854499
    59 https://doi.org/10.1155/2012/912852
    60 https://doi.org/10.1179/174328506x109130
    61 https://doi.org/10.2174/138920209789177629
    62 https://doi.org/10.4236/ijis.2013.31002
    63 schema:datePublished 2018-11-09
    64 schema:datePublishedReg 2018-11-09
    65 schema:description The mineral industry needs fast and efficient mineral quality monitoring equipment, and a machine vision system could be a suitable alternative to the traditional quality monitoring system. This study attempts to develop a machine vision-based expert system using support vector machine regression (SVR) model for the online quality monitoring of iron ores (hereafter known as ore grades). The images of the ore samples were captured during the run of condition on the fabricated conveyor belt transportation system. A total of 280 image features were extracted from each of the selected captured images in order to evaluate its suitability in object identification. A sequential forward floating selection (SFFS) algorithm was developed using the support vector machine regression (SVR) as a criterion function for selecting the optimum set of image features. The optimised feature subset was used as input, and the iron ore grade value was used as an output parameter for the model development. The grade of iron ore corresponding to each captured image was analysed in the laboratory using X-Ray Fluorescence (XRF) for grade estimation. The model was trained using 70% of the dataset and tested using 30% of the sample dataset. The model performance was evaluated using a test dataset with the five indices viz. the sum of squared errors (SSE), root mean squared error (RMSE), normalised mean squared error (NMSE), R-square (R2) and bias. The SSE, RMSE, NMSE and bias values of the model were obtained as 537.5367, 5.9863, 0.0063, and 0.8875, respectively. The R2 value of the model was obtained as 0.9402. The results indicate that the model performs satisfactorily for the iron ore grade prediction from the image collected in a controlled laboratory environment. The performance of the proposed model was compared with other models used in the previous studies. It was observed that the proposed model performs better than the other studied models (Gaussian Process Regression and Artificial Neural Network).
    66 schema:genre research_article
    67 schema:inLanguage en
    68 schema:isAccessibleForFree false
    69 schema:isPartOf sg:journal.1049211
    70 schema:name Development of a machine vision system using the support vector machine regression (SVR) algorithm for the online prediction of iron ore grades
    71 schema:pagination 1-14
    72 schema:productId N0c602948e587454a977adc97cfb510a8
    73 Naf8c1595c2ac4968a46a03b3fef7223e
    74 Nf1a7cae185b14821b2cefa0740b2be09
    75 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109791747
    76 https://doi.org/10.1007/s12145-018-0370-6
    77 schema:sdDatePublished 2019-04-10T16:56
    78 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    79 schema:sdPublisher Nd6ab842cbbb941f29545a8bea32cfa24
    80 schema:url https://link.springer.com/10.1007%2Fs12145-018-0370-6
    81 sgo:license sg:explorer/license/
    82 sgo:sdDataset articles
    83 rdf:type schema:ScholarlyArticle
    84 N0c602948e587454a977adc97cfb510a8 schema:name doi
    85 schema:value 10.1007/s12145-018-0370-6
    86 rdf:type schema:PropertyValue
    87 N12cb74ee91694a66a48b954653e1b2c3 rdf:first sg:person.01120463614.01
    88 rdf:rest rdf:nil
    89 N21871ccb32164426b6dc82baf8d1aedc rdf:first sg:person.011060220547.23
    90 rdf:rest N6f1ea0f34a2547cab1a3490c9f8553d6
    91 N6f1ea0f34a2547cab1a3490c9f8553d6 rdf:first sg:person.012453161547.50
    92 rdf:rest N12cb74ee91694a66a48b954653e1b2c3
    93 Naf8c1595c2ac4968a46a03b3fef7223e schema:name dimensions_id
    94 schema:value pub.1109791747
    95 rdf:type schema:PropertyValue
    96 Nb0915445268a401c8d5836ecb71040ef schema:name Department of Mining Engineering, National Institute of Technology, 769008, Rourkela, Orissa, India
    97 rdf:type schema:Organization
    98 Nd6ab842cbbb941f29545a8bea32cfa24 schema:name Springer Nature - SN SciGraph project
    99 rdf:type schema:Organization
    100 Nf1a7cae185b14821b2cefa0740b2be09 schema:name readcube_id
    101 schema:value 4ce4d77f2a617f7e9dcd72e6d0fe18446f99164d2a7ba805af8a9dd911c14ad7
    102 rdf:type schema:PropertyValue
    103 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    104 schema:name Information and Computing Sciences
    105 rdf:type schema:DefinedTerm
    106 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
    107 schema:name Artificial Intelligence and Image Processing
    108 rdf:type schema:DefinedTerm
    109 sg:journal.1049211 schema:issn 1865-0473
    110 1865-0481
    111 schema:name Earth Science Informatics
    112 rdf:type schema:Periodical
    113 sg:person.011060220547.23 schema:affiliation https://www.grid.ac/institutes/grid.449504.8
    114 schema:familyName Patel
    115 schema:givenName Ashok Kumar
    116 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011060220547.23
    117 rdf:type schema:Person
    118 sg:person.01120463614.01 schema:affiliation Nb0915445268a401c8d5836ecb71040ef
    119 schema:familyName Gorai
    120 schema:givenName Amit Kumar
    121 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01120463614.01
    122 rdf:type schema:Person
    123 sg:person.012453161547.50 schema:affiliation https://www.grid.ac/institutes/grid.259979.9
    124 schema:familyName Chatterjee
    125 schema:givenName Snehamoy
    126 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012453161547.50
    127 rdf:type schema:Person
    128 sg:pub.10.1007/3-540-63931-4_278 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037753890
    129 https://doi.org/10.1007/3-540-63931-4_278
    130 rdf:type schema:CreativeWork
    131 sg:pub.10.1007/978-1-4757-2440-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027312764
    132 https://doi.org/10.1007/978-1-4757-2440-0
    133 rdf:type schema:CreativeWork
    134 sg:pub.10.1007/978-3-319-08491-6_16 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015289859
    135 https://doi.org/10.1007/978-3-319-08491-6_16
    136 rdf:type schema:CreativeWork
    137 sg:pub.10.1007/bf00994018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025150743
    138 https://doi.org/10.1007/bf00994018
    139 rdf:type schema:CreativeWork
    140 sg:pub.10.1007/s10489-012-0391-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037164880
    141 https://doi.org/10.1007/s10489-012-0391-7
    142 rdf:type schema:CreativeWork
    143 sg:pub.10.1007/s11554-008-0078-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008908594
    144 https://doi.org/10.1007/s11554-008-0078-9
    145 rdf:type schema:CreativeWork
    146 sg:pub.10.1007/s12517-017-2909-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084035377
    147 https://doi.org/10.1007/s12517-017-2909-0
    148 rdf:type schema:CreativeWork
    149 sg:pub.10.1007/s12517-018-3733-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1105856659
    150 https://doi.org/10.1007/s12517-018-3733-x
    151 rdf:type schema:CreativeWork
    152 sg:pub.10.1023/a:1011183429707 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042965240
    153 https://doi.org/10.1023/a:1011183429707
    154 rdf:type schema:CreativeWork
    155 sg:pub.10.1023/b:stco.0000035301.49549.88 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000991887
    156 https://doi.org/10.1023/b:stco.0000035301.49549.88
    157 rdf:type schema:CreativeWork
    158 https://doi.org/10.1016/0167-8655(94)90127-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052101887
    159 rdf:type schema:CreativeWork
    160 https://doi.org/10.1016/0892-6875(94)00100-q schema:sameAs https://app.dimensions.ai/details/publication/pub.1049322561
    161 rdf:type schema:CreativeWork
    162 https://doi.org/10.1016/j.apm.2013.05.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049723835
    163 rdf:type schema:CreativeWork
    164 https://doi.org/10.1016/j.atmosenv.2016.01.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015335250
    165 rdf:type schema:CreativeWork
    166 https://doi.org/10.1016/j.cej.2012.07.081 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041123011
    167 rdf:type schema:CreativeWork
    168 https://doi.org/10.1016/j.compag.2016.10.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009203411
    169 rdf:type schema:CreativeWork
    170 https://doi.org/10.1016/j.compchemeng.2012.03.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048160676
    171 rdf:type schema:CreativeWork
    172 https://doi.org/10.1016/j.compind.2009.10.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033231833
    173 rdf:type schema:CreativeWork
    174 https://doi.org/10.1016/j.cviu.2007.09.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032836826
    175 rdf:type schema:CreativeWork
    176 https://doi.org/10.1016/j.dsp.2009.10.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040902331
    177 rdf:type schema:CreativeWork
    178 https://doi.org/10.1016/j.engappai.2010.11.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029828332
    179 rdf:type schema:CreativeWork
    180 https://doi.org/10.1016/j.engappai.2012.09.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034306334
    181 rdf:type schema:CreativeWork
    182 https://doi.org/10.1016/j.eswa.2012.01.104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032982927
    183 rdf:type schema:CreativeWork
    184 https://doi.org/10.1016/j.eswa.2015.01.030 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026501622
    185 rdf:type schema:CreativeWork
    186 https://doi.org/10.1016/j.gsf.2014.10.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041726254
    187 rdf:type schema:CreativeWork
    188 https://doi.org/10.1016/j.ijleo.2013.10.094 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038830896
    189 rdf:type schema:CreativeWork
    190 https://doi.org/10.1016/j.jvcir.2011.11.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052159889
    191 rdf:type schema:CreativeWork
    192 https://doi.org/10.1016/j.media.2011.05.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024619044
    193 rdf:type schema:CreativeWork
    194 https://doi.org/10.1016/j.mineng.2004.05.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041281084
    195 rdf:type schema:CreativeWork
    196 https://doi.org/10.1016/j.mineng.2005.03.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037161485
    197 rdf:type schema:CreativeWork
    198 https://doi.org/10.1016/j.mineng.2007.04.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018079478
    199 rdf:type schema:CreativeWork
    200 https://doi.org/10.1016/j.mineng.2008.12.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037105699
    201 rdf:type schema:CreativeWork
    202 https://doi.org/10.1016/j.minpro.2010.04.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043928571
    203 rdf:type schema:CreativeWork
    204 https://doi.org/10.1016/j.minpro.2011.07.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033823120
    205 rdf:type schema:CreativeWork
    206 https://doi.org/10.1016/j.minpro.2015.09.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015680106
    207 rdf:type schema:CreativeWork
    208 https://doi.org/10.1016/j.patrec.2008.03.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048361692
    209 rdf:type schema:CreativeWork
    210 https://doi.org/10.1016/j.procs.2015.08.092 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012097823
    211 rdf:type schema:CreativeWork
    212 https://doi.org/10.1016/j.trc.2013.10.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022642010
    213 rdf:type schema:CreativeWork
    214 https://doi.org/10.1016/j.visres.2006.09.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040943792
    215 rdf:type schema:CreativeWork
    216 https://doi.org/10.1016/s1076-5670(07)00402-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037095491
    217 rdf:type schema:CreativeWork
    218 https://doi.org/10.1016/s1077-3142(03)00025-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033756194
    219 rdf:type schema:CreativeWork
    220 https://doi.org/10.1049/cje.2016.05.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056747896
    221 rdf:type schema:CreativeWork
    222 https://doi.org/10.1049/ip-vis:20050810 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056861139
    223 rdf:type schema:CreativeWork
    224 https://doi.org/10.1088/1742-6596/332/1/012041 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015996746
    225 rdf:type schema:CreativeWork
    226 https://doi.org/10.1093/bioinformatics/bti171 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019379574
    227 rdf:type schema:CreativeWork
    228 https://doi.org/10.1109/daas.2014.6842451 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095335837
    229 rdf:type schema:CreativeWork
    230 https://doi.org/10.1109/ehb.2013.6707272 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094760253
    231 rdf:type schema:CreativeWork
    232 https://doi.org/10.1109/fcv.2015.7103746 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095622836
    233 rdf:type schema:CreativeWork
    234 https://doi.org/10.1109/iccp.2008.4648350 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095680756
    235 rdf:type schema:CreativeWork
    236 https://doi.org/10.1109/icsss.2013.6623006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093521354
    237 rdf:type schema:CreativeWork
    238 https://doi.org/10.1109/iecon.2010.5675075 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095521894
    239 rdf:type schema:CreativeWork
    240 https://doi.org/10.1109/ijcnn.2000.859420 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094185884
    241 rdf:type schema:CreativeWork
    242 https://doi.org/10.1109/mis.2005.105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061405785
    243 rdf:type schema:CreativeWork
    244 https://doi.org/10.1109/roman.2004.1374762 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095008309
    245 rdf:type schema:CreativeWork
    246 https://doi.org/10.1109/tsmcb.2005.854499 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061796526
    247 rdf:type schema:CreativeWork
    248 https://doi.org/10.1155/2012/912852 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048387753
    249 rdf:type schema:CreativeWork
    250 https://doi.org/10.1179/174328506x109130 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027837804
    251 rdf:type schema:CreativeWork
    252 https://doi.org/10.2174/138920209789177629 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013873483
    253 rdf:type schema:CreativeWork
    254 https://doi.org/10.4236/ijis.2013.31002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026258993
    255 rdf:type schema:CreativeWork
    256 https://www.grid.ac/institutes/grid.259979.9 schema:alternateName Michigan Technological University
    257 schema:name Department of Geological and Mining Engineering and Sciences, Michigan Technological University, 49931, Houghton, MI, USA
    258 rdf:type schema:Organization
    259 https://www.grid.ac/institutes/grid.449504.8 schema:alternateName Koneru Lakshmaiah Education Foundation
    260 schema:name Department of Computer Science and Engineering, K L University, Vaddeswaram, 522502, Guntur, Andhra Pradesh, India
    261 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...