Performance evaluation of textural features in improving land use/land cover classification accuracy of heterogeneous landscape using multi-sensor remote sensing data View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-03

AUTHORS

Varun Narayan Mishra, Rajendra Prasad, Praveen Kumar Rai, Ajeet Kumar Vishwakarma, Aman Arora

ABSTRACT

Texture analysis of remote sensing images has been received a substantial amount of attention as it plays a vital role in improving the classification accuracy of heterogeneous landscape. However, it is inadequately studied that how the images from different sensors with varying spatial resolutions influence the choice of textural features. This study endeavors to examine the textural features from the Landsat 8-OLI, RISAT-1, Resourcesat 2-LISS III, Sentinel-1A and Resourcesat 2-LISS IV satellite images with spatial resolution of 30, 25, 23.5, 5×20 and 5.8 m respectively, for improving land use/land cover (LULC) classification accuracy. The textural features were extracted from the aforesaid sensor data with the assistance of gray-level co-occurrence matrix (GLCM) with different moving window sizes. The best combination of textural features was recognized using standard deviations and correlation coefficients following separability analysis of LULC categories based on training samples. A supervised support vector machine (SVM) classifier was employed to perform LULC classification and the results were evaluated using ground truth information. This work demonstrates the significance of textural features in improving the classification accuracy of heterogeneous landscape and it becomes more significant as the spatial resolution improved. It is also revealed that textures are vital especially in the case of SAR data. More... »

PAGES

71-86

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s12145-018-0369-z

DOI

http://dx.doi.org/10.1007/s12145-018-0369-z

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1107880845


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0909", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Geomatic Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Indian Institute of Technology BHU", 
          "id": "https://www.grid.ac/institutes/grid.467228.d", 
          "name": [
            "Department of Physics, Indian Institute of Technology (BHU), 221005, Varanasi, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mishra", 
        "givenName": "Varun Narayan", 
        "id": "sg:person.011005252167.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011005252167.48"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Indian Institute of Technology BHU", 
          "id": "https://www.grid.ac/institutes/grid.467228.d", 
          "name": [
            "Department of Physics, Indian Institute of Technology (BHU), 221005, Varanasi, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Prasad", 
        "givenName": "Rajendra", 
        "id": "sg:person.016513711467.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016513711467.29"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Banaras Hindu University", 
          "id": "https://www.grid.ac/institutes/grid.411507.6", 
          "name": [
            "Department of Geography, Institute of Science, Banaras Hindu University, 221005, Varanasi, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rai", 
        "givenName": "Praveen Kumar", 
        "id": "sg:person.014761625273.24", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014761625273.24"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Indian Institute of Technology BHU", 
          "id": "https://www.grid.ac/institutes/grid.467228.d", 
          "name": [
            "Department of Physics, Indian Institute of Technology (BHU), 221005, Varanasi, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vishwakarma", 
        "givenName": "Ajeet Kumar", 
        "id": "sg:person.014036431541.96", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014036431541.96"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Jamia Millia Islamia", 
          "id": "https://www.grid.ac/institutes/grid.411818.5", 
          "name": [
            "Department of Geography, Faculty of Natural Sciences, Jamia Millia Islamia, 110025, New Delhi, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Arora", 
        "givenName": "Aman", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1080/02757259509532298", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003552517"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.rse.2006.10.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005552099"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/2150704x.2014.928422", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006257495"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0034-4257(98)00057-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013869621"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0034-4257(92)90011-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015408910"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0034-4257(92)90011-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015408910"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-0-387-75510-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015468566", 
          "https://doi.org/10.1007/978-0-387-75510-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-0-387-75510-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015468566", 
          "https://doi.org/10.1007/978-0-387-75510-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jag.2009.08.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018256787"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.eswa.2010.09.019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018773287"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.apgeog.2010.11.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019176052"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jaridenv.2008.07.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019730512"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01431160500239107", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020144069"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.rse.2014.01.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021792543"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01431160210155910", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024638717"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.isprsjprs.2012.03.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024872595"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.isprsjprs.2012.03.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024872595"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00994018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025150743", 
          "https://doi.org/10.1007/bf00994018"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.rse.2011.12.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025589227"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5194/isprsarchives-xl-8-833-2014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027341159"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12517-015-2138-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028065013", 
          "https://doi.org/10.1007/s12517-015-2138-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0098-3004(99)00119-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030003765"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0034-4257(96)00156-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034117402"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.14358/pers.74.3.311", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034876828"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/19479832.2013.804007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035689771"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12665-016-6341-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038832080", 
          "https://doi.org/10.1007/s12665-016-6341-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12665-016-6341-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038832080", 
          "https://doi.org/10.1007/s12665-016-6341-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01431160600746456", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041894571"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01431160050505865", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042069876"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.isprsjprs.2012.03.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046178254"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01431160120085", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047561959"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/2150704x.2015.1019015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049129248"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01431168408948810", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049444803"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01431160512331314083", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049567570"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.rse.2004.04.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049717343"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jag.2012.10.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052007062"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01431161.2014.980920", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052050167"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jag.2004.01.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052365920"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5194/isprsarchives-xl-8-987-2014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053277424"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/rs8030261", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053531449"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01431160310001618464", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058294519"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/36.377929", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061161228"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/36.469481", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061161356"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/36.563288", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061161575"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/36.951105", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061162727"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/lgrs.2013.2244060", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061359793"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tgrs.1990.572937", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061608415"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tsmc.1973.4309314", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061792707"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1117/1.jrs.11.046003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092202662"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1117/1.jrs.11.046003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092202662"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/10106049.2018.1464601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103247419"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-03", 
    "datePublishedReg": "2019-03-01", 
    "description": "Texture analysis of remote sensing images has been received a substantial amount of attention as it plays a vital role in improving the classification accuracy of heterogeneous landscape. However, it is inadequately studied that how the images from different sensors with varying spatial resolutions influence the choice of textural features. This study endeavors to examine the textural features from the Landsat 8-OLI, RISAT-1, Resourcesat 2-LISS III, Sentinel-1A and Resourcesat 2-LISS IV satellite images with spatial resolution of 30, 25, 23.5, 5\u00d720 and 5.8 m respectively, for improving land use/land cover (LULC) classification accuracy. The textural features were extracted from the aforesaid sensor data with the assistance of gray-level co-occurrence matrix (GLCM) with different moving window sizes. The best combination of textural features was recognized using standard deviations and correlation coefficients following separability analysis of LULC categories based on training samples. A supervised support vector machine (SVM) classifier was employed to perform LULC classification and the results were evaluated using ground truth information. This work demonstrates the significance of textural features in improving the classification accuracy of heterogeneous landscape and it becomes more significant as the spatial resolution improved. It is also revealed that textures are vital especially in the case of SAR data.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s12145-018-0369-z", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1049211", 
        "issn": [
          "1865-0473", 
          "1865-0481"
        ], 
        "name": "Earth Science Informatics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "12"
      }
    ], 
    "name": "Performance evaluation of textural features in improving land use/land cover classification accuracy of heterogeneous landscape using multi-sensor remote sensing data", 
    "pagination": "71-86", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "ea74eabf058be19b19c06f2a9eb5df6b0ab13c26d627fbf717fc66ff0768bc26"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s12145-018-0369-z"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1107880845"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s12145-018-0369-z", 
      "https://app.dimensions.ai/details/publication/pub.1107880845"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T09:42", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000346_0000000346/records_99843_00000004.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs12145-018-0369-z"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12145-018-0369-z'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12145-018-0369-z'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12145-018-0369-z'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12145-018-0369-z'


 

This table displays all metadata directly associated to this object as RDF triples.

236 TRIPLES      21 PREDICATES      73 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s12145-018-0369-z schema:about anzsrc-for:09
2 anzsrc-for:0909
3 schema:author N0e69bafdcd7345b9a78f857994c2a1f6
4 schema:citation sg:pub.10.1007/978-0-387-75510-6
5 sg:pub.10.1007/bf00994018
6 sg:pub.10.1007/s12517-015-2138-3
7 sg:pub.10.1007/s12665-016-6341-7
8 https://doi.org/10.1016/0034-4257(92)90011-8
9 https://doi.org/10.1016/j.apgeog.2010.11.007
10 https://doi.org/10.1016/j.eswa.2010.09.019
11 https://doi.org/10.1016/j.isprsjprs.2012.03.010
12 https://doi.org/10.1016/j.isprsjprs.2012.03.011
13 https://doi.org/10.1016/j.jag.2004.01.005
14 https://doi.org/10.1016/j.jag.2009.08.002
15 https://doi.org/10.1016/j.jag.2012.10.007
16 https://doi.org/10.1016/j.jaridenv.2008.07.009
17 https://doi.org/10.1016/j.rse.2004.04.005
18 https://doi.org/10.1016/j.rse.2006.10.010
19 https://doi.org/10.1016/j.rse.2011.12.003
20 https://doi.org/10.1016/j.rse.2014.01.011
21 https://doi.org/10.1016/s0034-4257(96)00156-3
22 https://doi.org/10.1016/s0034-4257(98)00057-1
23 https://doi.org/10.1016/s0098-3004(99)00119-3
24 https://doi.org/10.1080/01431160050505865
25 https://doi.org/10.1080/01431160120085
26 https://doi.org/10.1080/01431160210155910
27 https://doi.org/10.1080/01431160310001618464
28 https://doi.org/10.1080/01431160500239107
29 https://doi.org/10.1080/01431160512331314083
30 https://doi.org/10.1080/01431160600746456
31 https://doi.org/10.1080/01431161.2014.980920
32 https://doi.org/10.1080/01431168408948810
33 https://doi.org/10.1080/02757259509532298
34 https://doi.org/10.1080/10106049.2018.1464601
35 https://doi.org/10.1080/19479832.2013.804007
36 https://doi.org/10.1080/2150704x.2014.928422
37 https://doi.org/10.1080/2150704x.2015.1019015
38 https://doi.org/10.1109/36.377929
39 https://doi.org/10.1109/36.469481
40 https://doi.org/10.1109/36.563288
41 https://doi.org/10.1109/36.951105
42 https://doi.org/10.1109/lgrs.2013.2244060
43 https://doi.org/10.1109/tgrs.1990.572937
44 https://doi.org/10.1109/tsmc.1973.4309314
45 https://doi.org/10.1117/1.jrs.11.046003
46 https://doi.org/10.14358/pers.74.3.311
47 https://doi.org/10.3390/rs8030261
48 https://doi.org/10.5194/isprsarchives-xl-8-833-2014
49 https://doi.org/10.5194/isprsarchives-xl-8-987-2014
50 schema:datePublished 2019-03
51 schema:datePublishedReg 2019-03-01
52 schema:description Texture analysis of remote sensing images has been received a substantial amount of attention as it plays a vital role in improving the classification accuracy of heterogeneous landscape. However, it is inadequately studied that how the images from different sensors with varying spatial resolutions influence the choice of textural features. This study endeavors to examine the textural features from the Landsat 8-OLI, RISAT-1, Resourcesat 2-LISS III, Sentinel-1A and Resourcesat 2-LISS IV satellite images with spatial resolution of 30, 25, 23.5, 5×20 and 5.8 m respectively, for improving land use/land cover (LULC) classification accuracy. The textural features were extracted from the aforesaid sensor data with the assistance of gray-level co-occurrence matrix (GLCM) with different moving window sizes. The best combination of textural features was recognized using standard deviations and correlation coefficients following separability analysis of LULC categories based on training samples. A supervised support vector machine (SVM) classifier was employed to perform LULC classification and the results were evaluated using ground truth information. This work demonstrates the significance of textural features in improving the classification accuracy of heterogeneous landscape and it becomes more significant as the spatial resolution improved. It is also revealed that textures are vital especially in the case of SAR data.
53 schema:genre research_article
54 schema:inLanguage en
55 schema:isAccessibleForFree false
56 schema:isPartOf N92717e9ce4da4f7282f331cda3f4828e
57 Nbf1a2558cf2f441ab3264c67212e370c
58 sg:journal.1049211
59 schema:name Performance evaluation of textural features in improving land use/land cover classification accuracy of heterogeneous landscape using multi-sensor remote sensing data
60 schema:pagination 71-86
61 schema:productId N0f808d1b8a4049d2aedcafd8753d72dd
62 N2835b3e03c17439091e4671c5a1e5619
63 Nfe1ad92b45e14be28737817f872847aa
64 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107880845
65 https://doi.org/10.1007/s12145-018-0369-z
66 schema:sdDatePublished 2019-04-11T09:42
67 schema:sdLicense https://scigraph.springernature.com/explorer/license/
68 schema:sdPublisher N4d31f5c54d4443d082de855ae9869070
69 schema:url https://link.springer.com/10.1007%2Fs12145-018-0369-z
70 sgo:license sg:explorer/license/
71 sgo:sdDataset articles
72 rdf:type schema:ScholarlyArticle
73 N0e1ec2951fcf47168966ba75ee39be0b rdf:first sg:person.014036431541.96
74 rdf:rest Ne5ba9d6751214df08485832088734879
75 N0e69bafdcd7345b9a78f857994c2a1f6 rdf:first sg:person.011005252167.48
76 rdf:rest N825e842a433f4457812b58b98f80153d
77 N0f808d1b8a4049d2aedcafd8753d72dd schema:name doi
78 schema:value 10.1007/s12145-018-0369-z
79 rdf:type schema:PropertyValue
80 N2835b3e03c17439091e4671c5a1e5619 schema:name readcube_id
81 schema:value ea74eabf058be19b19c06f2a9eb5df6b0ab13c26d627fbf717fc66ff0768bc26
82 rdf:type schema:PropertyValue
83 N47e90544137c4ee8b2cfbaa26716ff8a schema:affiliation https://www.grid.ac/institutes/grid.411818.5
84 schema:familyName Arora
85 schema:givenName Aman
86 rdf:type schema:Person
87 N4d31f5c54d4443d082de855ae9869070 schema:name Springer Nature - SN SciGraph project
88 rdf:type schema:Organization
89 N60b39685250e4303b5b3a12522a1430f rdf:first sg:person.014761625273.24
90 rdf:rest N0e1ec2951fcf47168966ba75ee39be0b
91 N825e842a433f4457812b58b98f80153d rdf:first sg:person.016513711467.29
92 rdf:rest N60b39685250e4303b5b3a12522a1430f
93 N92717e9ce4da4f7282f331cda3f4828e schema:issueNumber 1
94 rdf:type schema:PublicationIssue
95 Nbf1a2558cf2f441ab3264c67212e370c schema:volumeNumber 12
96 rdf:type schema:PublicationVolume
97 Ne5ba9d6751214df08485832088734879 rdf:first N47e90544137c4ee8b2cfbaa26716ff8a
98 rdf:rest rdf:nil
99 Nfe1ad92b45e14be28737817f872847aa schema:name dimensions_id
100 schema:value pub.1107880845
101 rdf:type schema:PropertyValue
102 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
103 schema:name Engineering
104 rdf:type schema:DefinedTerm
105 anzsrc-for:0909 schema:inDefinedTermSet anzsrc-for:
106 schema:name Geomatic Engineering
107 rdf:type schema:DefinedTerm
108 sg:journal.1049211 schema:issn 1865-0473
109 1865-0481
110 schema:name Earth Science Informatics
111 rdf:type schema:Periodical
112 sg:person.011005252167.48 schema:affiliation https://www.grid.ac/institutes/grid.467228.d
113 schema:familyName Mishra
114 schema:givenName Varun Narayan
115 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011005252167.48
116 rdf:type schema:Person
117 sg:person.014036431541.96 schema:affiliation https://www.grid.ac/institutes/grid.467228.d
118 schema:familyName Vishwakarma
119 schema:givenName Ajeet Kumar
120 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014036431541.96
121 rdf:type schema:Person
122 sg:person.014761625273.24 schema:affiliation https://www.grid.ac/institutes/grid.411507.6
123 schema:familyName Rai
124 schema:givenName Praveen Kumar
125 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014761625273.24
126 rdf:type schema:Person
127 sg:person.016513711467.29 schema:affiliation https://www.grid.ac/institutes/grid.467228.d
128 schema:familyName Prasad
129 schema:givenName Rajendra
130 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016513711467.29
131 rdf:type schema:Person
132 sg:pub.10.1007/978-0-387-75510-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015468566
133 https://doi.org/10.1007/978-0-387-75510-6
134 rdf:type schema:CreativeWork
135 sg:pub.10.1007/bf00994018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025150743
136 https://doi.org/10.1007/bf00994018
137 rdf:type schema:CreativeWork
138 sg:pub.10.1007/s12517-015-2138-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028065013
139 https://doi.org/10.1007/s12517-015-2138-3
140 rdf:type schema:CreativeWork
141 sg:pub.10.1007/s12665-016-6341-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038832080
142 https://doi.org/10.1007/s12665-016-6341-7
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1016/0034-4257(92)90011-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015408910
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1016/j.apgeog.2010.11.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019176052
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1016/j.eswa.2010.09.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018773287
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1016/j.isprsjprs.2012.03.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046178254
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1016/j.isprsjprs.2012.03.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024872595
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1016/j.jag.2004.01.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052365920
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1016/j.jag.2009.08.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018256787
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1016/j.jag.2012.10.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052007062
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1016/j.jaridenv.2008.07.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019730512
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1016/j.rse.2004.04.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049717343
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1016/j.rse.2006.10.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005552099
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1016/j.rse.2011.12.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025589227
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1016/j.rse.2014.01.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021792543
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1016/s0034-4257(96)00156-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034117402
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1016/s0034-4257(98)00057-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013869621
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1016/s0098-3004(99)00119-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030003765
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1080/01431160050505865 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042069876
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1080/01431160120085 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047561959
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1080/01431160210155910 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024638717
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1080/01431160310001618464 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058294519
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1080/01431160500239107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020144069
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1080/01431160512331314083 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049567570
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1080/01431160600746456 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041894571
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1080/01431161.2014.980920 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052050167
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1080/01431168408948810 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049444803
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1080/02757259509532298 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003552517
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1080/10106049.2018.1464601 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103247419
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1080/19479832.2013.804007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035689771
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1080/2150704x.2014.928422 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006257495
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1080/2150704x.2015.1019015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049129248
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1109/36.377929 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061161228
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1109/36.469481 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061161356
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1109/36.563288 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061161575
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1109/36.951105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061162727
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1109/lgrs.2013.2244060 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061359793
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1109/tgrs.1990.572937 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061608415
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1109/tsmc.1973.4309314 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061792707
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1117/1.jrs.11.046003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092202662
219 rdf:type schema:CreativeWork
220 https://doi.org/10.14358/pers.74.3.311 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034876828
221 rdf:type schema:CreativeWork
222 https://doi.org/10.3390/rs8030261 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053531449
223 rdf:type schema:CreativeWork
224 https://doi.org/10.5194/isprsarchives-xl-8-833-2014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027341159
225 rdf:type schema:CreativeWork
226 https://doi.org/10.5194/isprsarchives-xl-8-987-2014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053277424
227 rdf:type schema:CreativeWork
228 https://www.grid.ac/institutes/grid.411507.6 schema:alternateName Banaras Hindu University
229 schema:name Department of Geography, Institute of Science, Banaras Hindu University, 221005, Varanasi, India
230 rdf:type schema:Organization
231 https://www.grid.ac/institutes/grid.411818.5 schema:alternateName Jamia Millia Islamia
232 schema:name Department of Geography, Faculty of Natural Sciences, Jamia Millia Islamia, 110025, New Delhi, India
233 rdf:type schema:Organization
234 https://www.grid.ac/institutes/grid.467228.d schema:alternateName Indian Institute of Technology BHU
235 schema:name Department of Physics, Indian Institute of Technology (BHU), 221005, Varanasi, India
236 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...