Force field driven skeleton extraction method for point cloud trees View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-11-06

AUTHORS

Linming Gao, Dong Zhang, Nan Li, Lei Chen

ABSTRACT

A key step in processing natural trees from point cloud data is to reconstruct the trees’ skeleton, which plays an important role in forest investigation and monitoring. Although the techniques for general objects skeletonizing based on point clouds have made a large stride, there are few efficient and simple studies on the natural trees, which have complex topologies. In this paper, we propose a novel method to reconstruct tree skeletons based on the point cloud data, named as the force field driven tree skeleton extracting method, which consists of the following steps. Specifically, to make the point cloud tree a little bit cleaner, the hierarchical subdivision to the original point cloud space is firstly proposed. Then the split-level of the trees’ applied space is considered in each layers, and a simplified representation of the feature points for the tree model is then established under the neighbor relationships. After that, the feature points in the peripheral are connected by the geodesic distance. To get the initial skeleton, the surface geodesic lines are compressed into the tree model by applying a visible repulsive force field. Finally, the final skeleton is acquired by polishing the initial skeleton according to a threshold setting. The experimental results on two kinds of representative naturally growing trees, which are the Cherry and Michelia, indicate that this method can provide a satisfactory performance. More... »

PAGES

1-11

References to SciGraph publications

  • 2010-10. SkelTre in THE VISUAL COMPUTER
  • 2014-06. Hybrid tree reconstruction from inhomogeneous point clouds in THE VISUAL COMPUTER
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s12145-018-0365-3

    DOI

    http://dx.doi.org/10.1007/s12145-018-0365-3

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1108042697


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0705", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Forestry Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/07", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Agricultural and Veterinary Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Nanjing Forestry University", 
              "id": "https://www.grid.ac/institutes/grid.410625.4", 
              "name": [
                "College of Information Science and Technology, Nanjing Forestry University, Longpan NO. 159, 210037, Nanjing, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Gao", 
            "givenName": "Linming", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Nanjing University of Science and Technology", 
              "id": "https://www.grid.ac/institutes/grid.410579.e", 
              "name": [
                "School of Computer Science and Engineering, Nanjing University of Science and Technology, Xiaolingwei NO. 200, 210094, Nanjing, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zhang", 
            "givenName": "Dong", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Nanjing Forestry University", 
              "id": "https://www.grid.ac/institutes/grid.410625.4", 
              "name": [
                "College of Biology and Environment Sciences, Nanjing Forestry University, Longpan NO. 159, 210037, Nanjing, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Li", 
            "givenName": "Nan", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Nanjing University", 
              "id": "https://www.grid.ac/institutes/grid.41156.37", 
              "name": [
                "College of Science, Nanjing Forestry University, Longpan NO. 159, 210037, Nanjing, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Chen", 
            "givenName": "Lei", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/j.agrformet.2016.01.062", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003428562"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/cav.1506", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004356200"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/966131.966132", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005125816"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/2150704x.2016.1157639", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012208882"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/376957.376986", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020208635"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/2461912.2461913", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020596312"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.robot.2015.11.006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021852211"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00371-014-0977-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027847683", 
              "https://doi.org/10.1007/s00371-014-0977-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.mcm.2010.11.043", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028112110"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1155/2013/290740", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032779364"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/237170.237244", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032842816"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3390/en9030124", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033030254"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ijrmms.2013.12.007", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035356954"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00371-010-0520-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039202065", 
              "https://doi.org/10.1007/s00371-010-0520-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00371-010-0520-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039202065", 
              "https://doi.org/10.1007/s00371-010-0520-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/280814.280947", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046886455"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/1882261.1866177", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051129432"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tgrs.2016.2543225", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051722089"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3390/f7030062", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052653395"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3390/f7080165", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053269112"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/38.920627", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061164333"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/lgrs.2014.2314179", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061360230"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tgrs.2013.2291815", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061613274"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tvcg.2015.2513409", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061814662"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1139/cjfr-2016-0086", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062889040"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.4304/jmm.5.3.208-215", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1072449523"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.5194/isprs-annals-iii-5-121-2016", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1072674198"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jag.2017.04.008", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085154517"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/icassp.2016.7472100", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1093189526"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/iscid.2008.129", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1093523388"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/igarss.2013.6723555", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094319667"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/isne.2016.7543328", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094633624"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/igarss.2015.7325825", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1095185981"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3390/f9040167", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101761945"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3390/f9040165", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101769145"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2018-11-06", 
        "datePublishedReg": "2018-11-06", 
        "description": "A key step in processing natural trees from point cloud data is to reconstruct the trees\u2019 skeleton, which plays an important role in forest investigation and monitoring. Although the techniques for general objects skeletonizing based on point clouds have made a large stride, there are few efficient and simple studies on the natural trees, which have complex topologies. In this paper, we propose a novel method to reconstruct tree skeletons based on the point cloud data, named as the force field driven tree skeleton extracting method, which consists of the following steps. Specifically, to make the point cloud tree a little bit cleaner, the hierarchical subdivision to the original point cloud space is firstly proposed. Then the split-level of the trees\u2019 applied space is considered in each layers, and a simplified representation of the feature points for the tree model is then established under the neighbor relationships. After that, the feature points in the peripheral are connected by the geodesic distance. To get the initial skeleton, the surface geodesic lines are compressed into the tree model by applying a visible repulsive force field. Finally, the final skeleton is acquired by polishing the initial skeleton according to a threshold setting. The experimental results on two kinds of representative naturally growing trees, which are the Cherry and Michelia, indicate that this method can provide a satisfactory performance.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s12145-018-0365-3", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1049211", 
            "issn": [
              "1865-0473", 
              "1865-0481"
            ], 
            "name": "Earth Science Informatics", 
            "type": "Periodical"
          }
        ], 
        "name": "Force field driven skeleton extraction method for point cloud trees", 
        "pagination": "1-11", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "e6ea8c602406095d8b8f54265f80162b07934c8b150d9af2f36ea7d5ad5f7a27"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s12145-018-0365-3"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1108042697"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s12145-018-0365-3", 
          "https://app.dimensions.ai/details/publication/pub.1108042697"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T21:49", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8687_00000578.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1007%2Fs12145-018-0365-3"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12145-018-0365-3'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12145-018-0365-3'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12145-018-0365-3'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12145-018-0365-3'


     

    This table displays all metadata directly associated to this object as RDF triples.

    183 TRIPLES      21 PREDICATES      58 URIs      16 LITERALS      5 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s12145-018-0365-3 schema:about anzsrc-for:07
    2 anzsrc-for:0705
    3 schema:author Naf7bec128f4f435c8f36904137e0a7e2
    4 schema:citation sg:pub.10.1007/s00371-010-0520-4
    5 sg:pub.10.1007/s00371-014-0977-7
    6 https://doi.org/10.1002/cav.1506
    7 https://doi.org/10.1016/j.agrformet.2016.01.062
    8 https://doi.org/10.1016/j.ijrmms.2013.12.007
    9 https://doi.org/10.1016/j.jag.2017.04.008
    10 https://doi.org/10.1016/j.mcm.2010.11.043
    11 https://doi.org/10.1016/j.robot.2015.11.006
    12 https://doi.org/10.1080/2150704x.2016.1157639
    13 https://doi.org/10.1109/38.920627
    14 https://doi.org/10.1109/icassp.2016.7472100
    15 https://doi.org/10.1109/igarss.2013.6723555
    16 https://doi.org/10.1109/igarss.2015.7325825
    17 https://doi.org/10.1109/iscid.2008.129
    18 https://doi.org/10.1109/isne.2016.7543328
    19 https://doi.org/10.1109/lgrs.2014.2314179
    20 https://doi.org/10.1109/tgrs.2013.2291815
    21 https://doi.org/10.1109/tgrs.2016.2543225
    22 https://doi.org/10.1109/tvcg.2015.2513409
    23 https://doi.org/10.1139/cjfr-2016-0086
    24 https://doi.org/10.1145/1882261.1866177
    25 https://doi.org/10.1145/237170.237244
    26 https://doi.org/10.1145/2461912.2461913
    27 https://doi.org/10.1145/280814.280947
    28 https://doi.org/10.1145/376957.376986
    29 https://doi.org/10.1145/966131.966132
    30 https://doi.org/10.1155/2013/290740
    31 https://doi.org/10.3390/en9030124
    32 https://doi.org/10.3390/f7030062
    33 https://doi.org/10.3390/f7080165
    34 https://doi.org/10.3390/f9040165
    35 https://doi.org/10.3390/f9040167
    36 https://doi.org/10.4304/jmm.5.3.208-215
    37 https://doi.org/10.5194/isprs-annals-iii-5-121-2016
    38 schema:datePublished 2018-11-06
    39 schema:datePublishedReg 2018-11-06
    40 schema:description A key step in processing natural trees from point cloud data is to reconstruct the trees’ skeleton, which plays an important role in forest investigation and monitoring. Although the techniques for general objects skeletonizing based on point clouds have made a large stride, there are few efficient and simple studies on the natural trees, which have complex topologies. In this paper, we propose a novel method to reconstruct tree skeletons based on the point cloud data, named as the force field driven tree skeleton extracting method, which consists of the following steps. Specifically, to make the point cloud tree a little bit cleaner, the hierarchical subdivision to the original point cloud space is firstly proposed. Then the split-level of the trees’ applied space is considered in each layers, and a simplified representation of the feature points for the tree model is then established under the neighbor relationships. After that, the feature points in the peripheral are connected by the geodesic distance. To get the initial skeleton, the surface geodesic lines are compressed into the tree model by applying a visible repulsive force field. Finally, the final skeleton is acquired by polishing the initial skeleton according to a threshold setting. The experimental results on two kinds of representative naturally growing trees, which are the Cherry and Michelia, indicate that this method can provide a satisfactory performance.
    41 schema:genre research_article
    42 schema:inLanguage en
    43 schema:isAccessibleForFree false
    44 schema:isPartOf sg:journal.1049211
    45 schema:name Force field driven skeleton extraction method for point cloud trees
    46 schema:pagination 1-11
    47 schema:productId N13add8a8e4d742d6ab9aa89f1ecc9d54
    48 N616b85e88356489fbb2b06553dc0dd88
    49 N9df5260119484d67be74fde974fd7628
    50 schema:sameAs https://app.dimensions.ai/details/publication/pub.1108042697
    51 https://doi.org/10.1007/s12145-018-0365-3
    52 schema:sdDatePublished 2019-04-10T21:49
    53 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    54 schema:sdPublisher Ne23f707698e643e08479c76c43169896
    55 schema:url https://link.springer.com/10.1007%2Fs12145-018-0365-3
    56 sgo:license sg:explorer/license/
    57 sgo:sdDataset articles
    58 rdf:type schema:ScholarlyArticle
    59 N13add8a8e4d742d6ab9aa89f1ecc9d54 schema:name dimensions_id
    60 schema:value pub.1108042697
    61 rdf:type schema:PropertyValue
    62 N344e427ae73c4d7ab2d0dd51c485fa7b rdf:first N5908cb9e4fdf43b29ee372ef05205d97
    63 rdf:rest Na2bb4cda7e414bd3a8803388405a4cec
    64 N5908cb9e4fdf43b29ee372ef05205d97 schema:affiliation https://www.grid.ac/institutes/grid.410625.4
    65 schema:familyName Li
    66 schema:givenName Nan
    67 rdf:type schema:Person
    68 N616b85e88356489fbb2b06553dc0dd88 schema:name readcube_id
    69 schema:value e6ea8c602406095d8b8f54265f80162b07934c8b150d9af2f36ea7d5ad5f7a27
    70 rdf:type schema:PropertyValue
    71 N83b9bafdd3a147a3b5e6cbf72da8f7c7 schema:affiliation https://www.grid.ac/institutes/grid.410625.4
    72 schema:familyName Gao
    73 schema:givenName Linming
    74 rdf:type schema:Person
    75 N9df5260119484d67be74fde974fd7628 schema:name doi
    76 schema:value 10.1007/s12145-018-0365-3
    77 rdf:type schema:PropertyValue
    78 Na2bb4cda7e414bd3a8803388405a4cec rdf:first Ndcb9f84decbd49ca870b3b3aab4268ae
    79 rdf:rest rdf:nil
    80 Naf7bec128f4f435c8f36904137e0a7e2 rdf:first N83b9bafdd3a147a3b5e6cbf72da8f7c7
    81 rdf:rest Nfb8948f509c74256b2d06cd8e7e2ec63
    82 Ncc97fc4c262e4d98bfa8b95230d278cd schema:affiliation https://www.grid.ac/institutes/grid.410579.e
    83 schema:familyName Zhang
    84 schema:givenName Dong
    85 rdf:type schema:Person
    86 Ndcb9f84decbd49ca870b3b3aab4268ae schema:affiliation https://www.grid.ac/institutes/grid.41156.37
    87 schema:familyName Chen
    88 schema:givenName Lei
    89 rdf:type schema:Person
    90 Ne23f707698e643e08479c76c43169896 schema:name Springer Nature - SN SciGraph project
    91 rdf:type schema:Organization
    92 Nfb8948f509c74256b2d06cd8e7e2ec63 rdf:first Ncc97fc4c262e4d98bfa8b95230d278cd
    93 rdf:rest N344e427ae73c4d7ab2d0dd51c485fa7b
    94 anzsrc-for:07 schema:inDefinedTermSet anzsrc-for:
    95 schema:name Agricultural and Veterinary Sciences
    96 rdf:type schema:DefinedTerm
    97 anzsrc-for:0705 schema:inDefinedTermSet anzsrc-for:
    98 schema:name Forestry Sciences
    99 rdf:type schema:DefinedTerm
    100 sg:journal.1049211 schema:issn 1865-0473
    101 1865-0481
    102 schema:name Earth Science Informatics
    103 rdf:type schema:Periodical
    104 sg:pub.10.1007/s00371-010-0520-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039202065
    105 https://doi.org/10.1007/s00371-010-0520-4
    106 rdf:type schema:CreativeWork
    107 sg:pub.10.1007/s00371-014-0977-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027847683
    108 https://doi.org/10.1007/s00371-014-0977-7
    109 rdf:type schema:CreativeWork
    110 https://doi.org/10.1002/cav.1506 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004356200
    111 rdf:type schema:CreativeWork
    112 https://doi.org/10.1016/j.agrformet.2016.01.062 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003428562
    113 rdf:type schema:CreativeWork
    114 https://doi.org/10.1016/j.ijrmms.2013.12.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035356954
    115 rdf:type schema:CreativeWork
    116 https://doi.org/10.1016/j.jag.2017.04.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085154517
    117 rdf:type schema:CreativeWork
    118 https://doi.org/10.1016/j.mcm.2010.11.043 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028112110
    119 rdf:type schema:CreativeWork
    120 https://doi.org/10.1016/j.robot.2015.11.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021852211
    121 rdf:type schema:CreativeWork
    122 https://doi.org/10.1080/2150704x.2016.1157639 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012208882
    123 rdf:type schema:CreativeWork
    124 https://doi.org/10.1109/38.920627 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061164333
    125 rdf:type schema:CreativeWork
    126 https://doi.org/10.1109/icassp.2016.7472100 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093189526
    127 rdf:type schema:CreativeWork
    128 https://doi.org/10.1109/igarss.2013.6723555 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094319667
    129 rdf:type schema:CreativeWork
    130 https://doi.org/10.1109/igarss.2015.7325825 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095185981
    131 rdf:type schema:CreativeWork
    132 https://doi.org/10.1109/iscid.2008.129 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093523388
    133 rdf:type schema:CreativeWork
    134 https://doi.org/10.1109/isne.2016.7543328 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094633624
    135 rdf:type schema:CreativeWork
    136 https://doi.org/10.1109/lgrs.2014.2314179 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061360230
    137 rdf:type schema:CreativeWork
    138 https://doi.org/10.1109/tgrs.2013.2291815 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061613274
    139 rdf:type schema:CreativeWork
    140 https://doi.org/10.1109/tgrs.2016.2543225 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051722089
    141 rdf:type schema:CreativeWork
    142 https://doi.org/10.1109/tvcg.2015.2513409 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061814662
    143 rdf:type schema:CreativeWork
    144 https://doi.org/10.1139/cjfr-2016-0086 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062889040
    145 rdf:type schema:CreativeWork
    146 https://doi.org/10.1145/1882261.1866177 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051129432
    147 rdf:type schema:CreativeWork
    148 https://doi.org/10.1145/237170.237244 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032842816
    149 rdf:type schema:CreativeWork
    150 https://doi.org/10.1145/2461912.2461913 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020596312
    151 rdf:type schema:CreativeWork
    152 https://doi.org/10.1145/280814.280947 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046886455
    153 rdf:type schema:CreativeWork
    154 https://doi.org/10.1145/376957.376986 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020208635
    155 rdf:type schema:CreativeWork
    156 https://doi.org/10.1145/966131.966132 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005125816
    157 rdf:type schema:CreativeWork
    158 https://doi.org/10.1155/2013/290740 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032779364
    159 rdf:type schema:CreativeWork
    160 https://doi.org/10.3390/en9030124 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033030254
    161 rdf:type schema:CreativeWork
    162 https://doi.org/10.3390/f7030062 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052653395
    163 rdf:type schema:CreativeWork
    164 https://doi.org/10.3390/f7080165 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053269112
    165 rdf:type schema:CreativeWork
    166 https://doi.org/10.3390/f9040165 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101769145
    167 rdf:type schema:CreativeWork
    168 https://doi.org/10.3390/f9040167 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101761945
    169 rdf:type schema:CreativeWork
    170 https://doi.org/10.4304/jmm.5.3.208-215 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072449523
    171 rdf:type schema:CreativeWork
    172 https://doi.org/10.5194/isprs-annals-iii-5-121-2016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072674198
    173 rdf:type schema:CreativeWork
    174 https://www.grid.ac/institutes/grid.410579.e schema:alternateName Nanjing University of Science and Technology
    175 schema:name School of Computer Science and Engineering, Nanjing University of Science and Technology, Xiaolingwei NO. 200, 210094, Nanjing, China
    176 rdf:type schema:Organization
    177 https://www.grid.ac/institutes/grid.410625.4 schema:alternateName Nanjing Forestry University
    178 schema:name College of Biology and Environment Sciences, Nanjing Forestry University, Longpan NO. 159, 210037, Nanjing, China
    179 College of Information Science and Technology, Nanjing Forestry University, Longpan NO. 159, 210037, Nanjing, China
    180 rdf:type schema:Organization
    181 https://www.grid.ac/institutes/grid.41156.37 schema:alternateName Nanjing University
    182 schema:name College of Science, Nanjing Forestry University, Longpan NO. 159, 210037, Nanjing, China
    183 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...