Efficient spatiotemporal interpolation with spark machine learning View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-03

AUTHORS

Weitian Tong, Lixin Li, Xiaolu Zhou, Jason Franklin

ABSTRACT

To better assess the relationships between environmental exposures and health outcomes, an appropriate spatiotemporal interpolation is critical. Traditional spatiotemporal interpolation methods either consider the spatial and temporal dimensions separately or incorporate both dimensions simultaneously by simply treating time as another dimension in space. Such interpolation results suffer from relatively low accuracy as the true space-time domain is skewed inappropriately and the distance calculation in such domain is not accurate. We employ the efficient k-d tree structure to store spatiotemporal data and adopt several machine learning methods to learn optimal parameters. To overcome the computational difficulty with large data sets, we implement our method on an efficient cluster computing framework – Apache Spark. Real world PM2.5 data sets are utilized to test our implementation and the experimental results demonstrate the computational power of our method, which significantly outperforms the previous work in terms of both speed and accuracy. More... »

PAGES

87-96

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s12145-018-0364-4

DOI

http://dx.doi.org/10.1007/s12145-018-0364-4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1108012872


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Georgia Southern University", 
          "id": "https://www.grid.ac/institutes/grid.256302.0", 
          "name": [
            "Department of Computer Science, Georgia Southern University, P.O. Box 7997, 30460, Statesboro, GA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tong", 
        "givenName": "Weitian", 
        "id": "sg:person.016571774517.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016571774517.52"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Georgia Southern University", 
          "id": "https://www.grid.ac/institutes/grid.256302.0", 
          "name": [
            "Department of Computer Science, Georgia Southern University, P.O. Box 7997, 30460, Statesboro, GA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Lixin", 
        "id": "sg:person.015623755213.27", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015623755213.27"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Georgia Southern University", 
          "id": "https://www.grid.ac/institutes/grid.256302.0", 
          "name": [
            "Department of Geology and Geography, Georgia Southern University, 30460, Statesboro, GA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhou", 
        "givenName": "Xiaolu", 
        "id": "sg:person.015552465537.85", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015552465537.85"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Georgia Southern University", 
          "id": "https://www.grid.ac/institutes/grid.256302.0", 
          "name": [
            "Department of Computer Science, Georgia Southern University, P.O. Box 7997, 30460, Statesboro, GA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Franklin", 
        "givenName": "Jason", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/s0140-6736(02)11274-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004483456"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0140-6736(02)11274-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004483456"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0960-1686(91)90143-u", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004816692"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0960-1686(91)90143-u", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004816692"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0140-6736(00)02653-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006808578"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-25005-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008785060", 
          "https://doi.org/10.1007/978-3-642-25005-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-25005-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008785060", 
          "https://doi.org/10.1007/978-3-642-25005-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/01.cir.0000108927.80044.7f", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008857249"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/ijerph110909101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017409118"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/10473289.2006.10464485", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019288511"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1289/ehp.1206185", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024699550"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0133421", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028517531"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/800186.810616", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032810059"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1289/ehp.9169", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033009218"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0198-9715(03)00018-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034539401"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0198-9715(03)00018-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034539401"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13040-015-0060-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034770762", 
          "https://doi.org/10.1186/s13040-015-0060-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-81-322-3628-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036063335", 
          "https://doi.org/10.1007/978-81-322-3628-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/10473289.2005.10464599", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037100869"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/qj.700", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037203664"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/qj.700", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037203664"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0140-6736(95)90173-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038447811"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0140-6736(95)90173-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038447811"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1190/1.1439905", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040360382"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1289/ehp.0800108", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042298633"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/aje/kwf068", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044909388"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/355744.355745", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051377384"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1289/ehp.00108941", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064737119"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1289/ehp.02110187", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064737613"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.18637/jss.v051.i07", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068672765"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/143141", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069491255"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5311/josis.2013.6.102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072758275"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1079156933", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/com.geo.2014.15", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093459757"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1108526495", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4899-4467-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109705916", 
          "https://doi.org/10.1007/978-1-4899-4467-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4899-4467-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109705916", 
          "https://doi.org/10.1007/978-1-4899-4467-2"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-03", 
    "datePublishedReg": "2019-03-01", 
    "description": "To better assess the relationships between environmental exposures and health outcomes, an appropriate spatiotemporal interpolation is critical. Traditional spatiotemporal interpolation methods either consider the spatial and temporal dimensions separately or incorporate both dimensions simultaneously by simply treating time as another dimension in space. Such interpolation results suffer from relatively low accuracy as the true space-time domain is skewed inappropriately and the distance calculation in such domain is not accurate. We employ the efficient k-d tree structure to store spatiotemporal data and adopt several machine learning methods to learn optimal parameters. To overcome the computational difficulty with large data sets, we implement our method on an efficient cluster computing framework \u2013 Apache Spark. Real world PM2.5 data sets are utilized to test our implementation and the experimental results demonstrate the computational power of our method, which significantly outperforms the previous work in terms of both speed and accuracy.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s12145-018-0364-4", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1049211", 
        "issn": [
          "1865-0473", 
          "1865-0481"
        ], 
        "name": "Earth Science Informatics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "12"
      }
    ], 
    "name": "Efficient spatiotemporal interpolation with spark machine learning", 
    "pagination": "87-96", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "3e0ba407b823f2f2a6b75f30b7712e0d2d15eec002dc6d27872ef2f0d179c8a9"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s12145-018-0364-4"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1108012872"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s12145-018-0364-4", 
      "https://app.dimensions.ai/details/publication/pub.1108012872"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T09:32", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000346_0000000346/records_99806_00000004.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs12145-018-0364-4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12145-018-0364-4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12145-018-0364-4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12145-018-0364-4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12145-018-0364-4'


 

This table displays all metadata directly associated to this object as RDF triples.

174 TRIPLES      21 PREDICATES      57 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s12145-018-0364-4 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N8bc4189c11734d1b8704e71fcc318aa5
4 schema:citation sg:pub.10.1007/978-1-4899-4467-2
5 sg:pub.10.1007/978-3-642-25005-7
6 sg:pub.10.1007/978-81-322-3628-3
7 sg:pub.10.1186/s13040-015-0060-6
8 https://app.dimensions.ai/details/publication/pub.1079156933
9 https://app.dimensions.ai/details/publication/pub.1108526495
10 https://doi.org/10.1002/qj.700
11 https://doi.org/10.1016/0960-1686(91)90143-u
12 https://doi.org/10.1016/s0140-6736(00)02653-2
13 https://doi.org/10.1016/s0140-6736(02)11274-8
14 https://doi.org/10.1016/s0140-6736(95)90173-6
15 https://doi.org/10.1016/s0198-9715(03)00018-8
16 https://doi.org/10.1080/10473289.2005.10464599
17 https://doi.org/10.1080/10473289.2006.10464485
18 https://doi.org/10.1093/aje/kwf068
19 https://doi.org/10.1109/com.geo.2014.15
20 https://doi.org/10.1145/355744.355745
21 https://doi.org/10.1145/800186.810616
22 https://doi.org/10.1161/01.cir.0000108927.80044.7f
23 https://doi.org/10.1190/1.1439905
24 https://doi.org/10.1289/ehp.00108941
25 https://doi.org/10.1289/ehp.02110187
26 https://doi.org/10.1289/ehp.0800108
27 https://doi.org/10.1289/ehp.1206185
28 https://doi.org/10.1289/ehp.9169
29 https://doi.org/10.1371/journal.pone.0133421
30 https://doi.org/10.18637/jss.v051.i07
31 https://doi.org/10.2307/143141
32 https://doi.org/10.3390/ijerph110909101
33 https://doi.org/10.5311/josis.2013.6.102
34 schema:datePublished 2019-03
35 schema:datePublishedReg 2019-03-01
36 schema:description To better assess the relationships between environmental exposures and health outcomes, an appropriate spatiotemporal interpolation is critical. Traditional spatiotemporal interpolation methods either consider the spatial and temporal dimensions separately or incorporate both dimensions simultaneously by simply treating time as another dimension in space. Such interpolation results suffer from relatively low accuracy as the true space-time domain is skewed inappropriately and the distance calculation in such domain is not accurate. We employ the efficient k-d tree structure to store spatiotemporal data and adopt several machine learning methods to learn optimal parameters. To overcome the computational difficulty with large data sets, we implement our method on an efficient cluster computing framework – Apache Spark. Real world PM2.5 data sets are utilized to test our implementation and the experimental results demonstrate the computational power of our method, which significantly outperforms the previous work in terms of both speed and accuracy.
37 schema:genre research_article
38 schema:inLanguage en
39 schema:isAccessibleForFree false
40 schema:isPartOf N7ebf05b5766444f489c2fa9ebbadfff1
41 N9e19f6ca68fa439fbe115cd81c72ed1d
42 sg:journal.1049211
43 schema:name Efficient spatiotemporal interpolation with spark machine learning
44 schema:pagination 87-96
45 schema:productId N366179776fc24dfa84c538c0e2d47fc0
46 N39c024f67e1446e2814ac98901a06c26
47 N5fde984a2e8f424a914d5e6a9fa9fa58
48 schema:sameAs https://app.dimensions.ai/details/publication/pub.1108012872
49 https://doi.org/10.1007/s12145-018-0364-4
50 schema:sdDatePublished 2019-04-11T09:32
51 schema:sdLicense https://scigraph.springernature.com/explorer/license/
52 schema:sdPublisher Nac2856ed5c134b7ea9860f0c04df6294
53 schema:url https://link.springer.com/10.1007%2Fs12145-018-0364-4
54 sgo:license sg:explorer/license/
55 sgo:sdDataset articles
56 rdf:type schema:ScholarlyArticle
57 N1bf9fc4c84024dda9dedf581b65224a8 schema:affiliation https://www.grid.ac/institutes/grid.256302.0
58 schema:familyName Franklin
59 schema:givenName Jason
60 rdf:type schema:Person
61 N366179776fc24dfa84c538c0e2d47fc0 schema:name doi
62 schema:value 10.1007/s12145-018-0364-4
63 rdf:type schema:PropertyValue
64 N39c024f67e1446e2814ac98901a06c26 schema:name dimensions_id
65 schema:value pub.1108012872
66 rdf:type schema:PropertyValue
67 N5868363351bd4d9386fb00795256066f rdf:first sg:person.015552465537.85
68 rdf:rest Nfc29db3ea62d4fb39f0349a82530bd40
69 N5fde984a2e8f424a914d5e6a9fa9fa58 schema:name readcube_id
70 schema:value 3e0ba407b823f2f2a6b75f30b7712e0d2d15eec002dc6d27872ef2f0d179c8a9
71 rdf:type schema:PropertyValue
72 N7ebf05b5766444f489c2fa9ebbadfff1 schema:issueNumber 1
73 rdf:type schema:PublicationIssue
74 N8bc4189c11734d1b8704e71fcc318aa5 rdf:first sg:person.016571774517.52
75 rdf:rest Ndc98709191ae4625bc76e4ce96d88fe3
76 N9e19f6ca68fa439fbe115cd81c72ed1d schema:volumeNumber 12
77 rdf:type schema:PublicationVolume
78 Nac2856ed5c134b7ea9860f0c04df6294 schema:name Springer Nature - SN SciGraph project
79 rdf:type schema:Organization
80 Ndc98709191ae4625bc76e4ce96d88fe3 rdf:first sg:person.015623755213.27
81 rdf:rest N5868363351bd4d9386fb00795256066f
82 Nfc29db3ea62d4fb39f0349a82530bd40 rdf:first N1bf9fc4c84024dda9dedf581b65224a8
83 rdf:rest rdf:nil
84 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
85 schema:name Information and Computing Sciences
86 rdf:type schema:DefinedTerm
87 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
88 schema:name Artificial Intelligence and Image Processing
89 rdf:type schema:DefinedTerm
90 sg:journal.1049211 schema:issn 1865-0473
91 1865-0481
92 schema:name Earth Science Informatics
93 rdf:type schema:Periodical
94 sg:person.015552465537.85 schema:affiliation https://www.grid.ac/institutes/grid.256302.0
95 schema:familyName Zhou
96 schema:givenName Xiaolu
97 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015552465537.85
98 rdf:type schema:Person
99 sg:person.015623755213.27 schema:affiliation https://www.grid.ac/institutes/grid.256302.0
100 schema:familyName Li
101 schema:givenName Lixin
102 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015623755213.27
103 rdf:type schema:Person
104 sg:person.016571774517.52 schema:affiliation https://www.grid.ac/institutes/grid.256302.0
105 schema:familyName Tong
106 schema:givenName Weitian
107 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016571774517.52
108 rdf:type schema:Person
109 sg:pub.10.1007/978-1-4899-4467-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109705916
110 https://doi.org/10.1007/978-1-4899-4467-2
111 rdf:type schema:CreativeWork
112 sg:pub.10.1007/978-3-642-25005-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008785060
113 https://doi.org/10.1007/978-3-642-25005-7
114 rdf:type schema:CreativeWork
115 sg:pub.10.1007/978-81-322-3628-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036063335
116 https://doi.org/10.1007/978-81-322-3628-3
117 rdf:type schema:CreativeWork
118 sg:pub.10.1186/s13040-015-0060-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034770762
119 https://doi.org/10.1186/s13040-015-0060-6
120 rdf:type schema:CreativeWork
121 https://app.dimensions.ai/details/publication/pub.1079156933 schema:CreativeWork
122 https://app.dimensions.ai/details/publication/pub.1108526495 schema:CreativeWork
123 https://doi.org/10.1002/qj.700 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037203664
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1016/0960-1686(91)90143-u schema:sameAs https://app.dimensions.ai/details/publication/pub.1004816692
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1016/s0140-6736(00)02653-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006808578
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1016/s0140-6736(02)11274-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004483456
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1016/s0140-6736(95)90173-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038447811
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1016/s0198-9715(03)00018-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034539401
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1080/10473289.2005.10464599 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037100869
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1080/10473289.2006.10464485 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019288511
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1093/aje/kwf068 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044909388
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1109/com.geo.2014.15 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093459757
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1145/355744.355745 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051377384
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1145/800186.810616 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032810059
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1161/01.cir.0000108927.80044.7f schema:sameAs https://app.dimensions.ai/details/publication/pub.1008857249
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1190/1.1439905 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040360382
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1289/ehp.00108941 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064737119
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1289/ehp.02110187 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064737613
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1289/ehp.0800108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042298633
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1289/ehp.1206185 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024699550
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1289/ehp.9169 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033009218
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1371/journal.pone.0133421 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028517531
162 rdf:type schema:CreativeWork
163 https://doi.org/10.18637/jss.v051.i07 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068672765
164 rdf:type schema:CreativeWork
165 https://doi.org/10.2307/143141 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069491255
166 rdf:type schema:CreativeWork
167 https://doi.org/10.3390/ijerph110909101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017409118
168 rdf:type schema:CreativeWork
169 https://doi.org/10.5311/josis.2013.6.102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072758275
170 rdf:type schema:CreativeWork
171 https://www.grid.ac/institutes/grid.256302.0 schema:alternateName Georgia Southern University
172 schema:name Department of Computer Science, Georgia Southern University, P.O. Box 7997, 30460, Statesboro, GA, USA
173 Department of Geology and Geography, Georgia Southern University, 30460, Statesboro, GA, USA
174 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...