Method for managing and querying geo-spatial data using a grid-code-array spatial index View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-11-08

AUTHORS

Shuang Li, Guoliang Pu, Chengqi Cheng, Bo Chen

ABSTRACT

As geospatial data is increasingly massive and complex, large data volume and rich data source query retrieval are among the urgent issues in need of resolution. Spatial indices are widely used to organize data and optimize queries. However, tree-based indices are increasingly difficult to adapt to a high-efficiency query, and the combination of a grid index and space-filling curve can help decrease the dimensions to improve the query efficiency, but can also lead to data redundancy as one object can cover several grids. To solve the aforementioned problems, this paper proposes a method to manage and query data using a grid-code-array spatial index based on a GeoSOT global subdivision model. For the first time, a grid code was organized in a code-array format and an inverted index was constructed on the column of the code-array. By adding a grid-code-array data structure, we verified the feasibility and efficiency and compared the R-tree index in the Oracle Spatial system and the grid index in the ArcSDE geodatabase for Oracle, which are the most widely used. Experimental results showed that the spatial index we proposed has obvious advantages, which could solve the problem of storage redundancy and query results, and effectively improve spatial queries particularly when the data volume is large. More... »

PAGES

1-9

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s12145-018-0362-6

DOI

http://dx.doi.org/10.1007/s12145-018-0362-6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1109757407


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0806", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information Systems", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Peking University", 
          "id": "https://www.grid.ac/institutes/grid.11135.37", 
          "name": [
            "Institute of Remote Sensing and GIS, Peking University, 100871, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Shuang", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Peking University", 
          "id": "https://www.grid.ac/institutes/grid.11135.37", 
          "name": [
            "College of Engineering, Peking University, 100871, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pu", 
        "givenName": "Guoliang", 
        "id": "sg:person.011125172473.57", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011125172473.57"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Peking University", 
          "id": "https://www.grid.ac/institutes/grid.11135.37", 
          "name": [
            "College of Engineering, Peking University, 100871, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cheng", 
        "givenName": "Chengqi", 
        "id": "sg:person.010640121063.24", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010640121063.24"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Peking University", 
          "id": "https://www.grid.ac/institutes/grid.11135.37", 
          "name": [
            "College of Engineering, Peking University, 100871, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chen", 
        "givenName": "Bo", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s12145-011-0082-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009394585", 
          "https://doi.org/10.1007/s12145-011-0082-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/ijgi5100173", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011831092"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/ijgi4010320", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011846277"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12145-016-0276-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013443038", 
          "https://doi.org/10.1007/s12145-016-0276-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12145-016-0276-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013443038", 
          "https://doi.org/10.1007/s12145-016-0276-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/ijgi5090161", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026282493"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01431160412331291297", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029590258"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10980-007-9173-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030864493", 
          "https://doi.org/10.1007/s10980-007-9173-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11431-011-4549-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048000832", 
          "https://doi.org/10.1007/s11431-011-4549-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/ijgi6070220", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090776695"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/geosciences7040128", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099790433"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-11-08", 
    "datePublishedReg": "2018-11-08", 
    "description": "As geospatial data is increasingly massive and complex, large data volume and rich data source query retrieval are among the urgent issues in need of resolution. Spatial indices are widely used to organize data and optimize queries. However, tree-based indices are increasingly difficult to adapt to a high-efficiency query, and the combination of a grid index and space-filling curve can help decrease the dimensions to improve the query efficiency, but can also lead to data redundancy as one object can cover several grids. To solve the aforementioned problems, this paper proposes a method to manage and query data using a grid-code-array spatial index based on a GeoSOT global subdivision model. For the first time, a grid code was organized in a code-array format and an inverted index was constructed on the column of the code-array. By adding a grid-code-array data structure, we verified the feasibility and efficiency and compared the R-tree index in the Oracle Spatial system and the grid index in the ArcSDE geodatabase for Oracle, which are the most widely used. Experimental results showed that the spatial index we proposed has obvious advantages, which could solve the problem of storage redundancy and query results, and effectively improve spatial queries particularly when the data volume is large.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s12145-018-0362-6", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1049211", 
        "issn": [
          "1865-0473", 
          "1865-0481"
        ], 
        "name": "Earth Science Informatics", 
        "type": "Periodical"
      }
    ], 
    "name": "Method for managing and querying geo-spatial data using a grid-code-array spatial index", 
    "pagination": "1-9", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "aee14c19717dd046e4baddac8fe4dbae8ccfa3e33d7fc54d63f2bf2a416d447d"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s12145-018-0362-6"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1109757407"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s12145-018-0362-6", 
      "https://app.dimensions.ai/details/publication/pub.1109757407"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T01:23", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8697_00000610.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs12145-018-0362-6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12145-018-0362-6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12145-018-0362-6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12145-018-0362-6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12145-018-0362-6'


 

This table displays all metadata directly associated to this object as RDF triples.

109 TRIPLES      21 PREDICATES      34 URIs      16 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s12145-018-0362-6 schema:about anzsrc-for:08
2 anzsrc-for:0806
3 schema:author N7f7b6f0c42c048faacd62a0381d7299e
4 schema:citation sg:pub.10.1007/s10980-007-9173-8
5 sg:pub.10.1007/s11431-011-4549-z
6 sg:pub.10.1007/s12145-011-0082-7
7 sg:pub.10.1007/s12145-016-0276-0
8 https://doi.org/10.1080/01431160412331291297
9 https://doi.org/10.3390/geosciences7040128
10 https://doi.org/10.3390/ijgi4010320
11 https://doi.org/10.3390/ijgi5090161
12 https://doi.org/10.3390/ijgi5100173
13 https://doi.org/10.3390/ijgi6070220
14 schema:datePublished 2018-11-08
15 schema:datePublishedReg 2018-11-08
16 schema:description As geospatial data is increasingly massive and complex, large data volume and rich data source query retrieval are among the urgent issues in need of resolution. Spatial indices are widely used to organize data and optimize queries. However, tree-based indices are increasingly difficult to adapt to a high-efficiency query, and the combination of a grid index and space-filling curve can help decrease the dimensions to improve the query efficiency, but can also lead to data redundancy as one object can cover several grids. To solve the aforementioned problems, this paper proposes a method to manage and query data using a grid-code-array spatial index based on a GeoSOT global subdivision model. For the first time, a grid code was organized in a code-array format and an inverted index was constructed on the column of the code-array. By adding a grid-code-array data structure, we verified the feasibility and efficiency and compared the R-tree index in the Oracle Spatial system and the grid index in the ArcSDE geodatabase for Oracle, which are the most widely used. Experimental results showed that the spatial index we proposed has obvious advantages, which could solve the problem of storage redundancy and query results, and effectively improve spatial queries particularly when the data volume is large.
17 schema:genre research_article
18 schema:inLanguage en
19 schema:isAccessibleForFree false
20 schema:isPartOf sg:journal.1049211
21 schema:name Method for managing and querying geo-spatial data using a grid-code-array spatial index
22 schema:pagination 1-9
23 schema:productId N610ffe8f692a487f972df2f4a5d4253c
24 N9157657788864620862dc0fa46fd9c65
25 N945f2c70d1c94ffcab1f07be792520a6
26 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109757407
27 https://doi.org/10.1007/s12145-018-0362-6
28 schema:sdDatePublished 2019-04-11T01:23
29 schema:sdLicense https://scigraph.springernature.com/explorer/license/
30 schema:sdPublisher N9a67456089124b46b3cd88121a293aa1
31 schema:url https://link.springer.com/10.1007%2Fs12145-018-0362-6
32 sgo:license sg:explorer/license/
33 sgo:sdDataset articles
34 rdf:type schema:ScholarlyArticle
35 N610ffe8f692a487f972df2f4a5d4253c schema:name dimensions_id
36 schema:value pub.1109757407
37 rdf:type schema:PropertyValue
38 N7c2cbbeb7ba340ccb7646e05dfb89800 rdf:first Naca3c18e412f41478e8fc4e484890b94
39 rdf:rest rdf:nil
40 N7f7b6f0c42c048faacd62a0381d7299e rdf:first Nff87d1d9e9b4432db66a88ed9138b2ca
41 rdf:rest Nd3a396afcf6f405996d6747868780b61
42 N9157657788864620862dc0fa46fd9c65 schema:name readcube_id
43 schema:value aee14c19717dd046e4baddac8fe4dbae8ccfa3e33d7fc54d63f2bf2a416d447d
44 rdf:type schema:PropertyValue
45 N91ddd8a130d34a8dabcf0878fd387d72 rdf:first sg:person.010640121063.24
46 rdf:rest N7c2cbbeb7ba340ccb7646e05dfb89800
47 N945f2c70d1c94ffcab1f07be792520a6 schema:name doi
48 schema:value 10.1007/s12145-018-0362-6
49 rdf:type schema:PropertyValue
50 N9a67456089124b46b3cd88121a293aa1 schema:name Springer Nature - SN SciGraph project
51 rdf:type schema:Organization
52 Naca3c18e412f41478e8fc4e484890b94 schema:affiliation https://www.grid.ac/institutes/grid.11135.37
53 schema:familyName Chen
54 schema:givenName Bo
55 rdf:type schema:Person
56 Nd3a396afcf6f405996d6747868780b61 rdf:first sg:person.011125172473.57
57 rdf:rest N91ddd8a130d34a8dabcf0878fd387d72
58 Nff87d1d9e9b4432db66a88ed9138b2ca schema:affiliation https://www.grid.ac/institutes/grid.11135.37
59 schema:familyName Li
60 schema:givenName Shuang
61 rdf:type schema:Person
62 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
63 schema:name Information and Computing Sciences
64 rdf:type schema:DefinedTerm
65 anzsrc-for:0806 schema:inDefinedTermSet anzsrc-for:
66 schema:name Information Systems
67 rdf:type schema:DefinedTerm
68 sg:journal.1049211 schema:issn 1865-0473
69 1865-0481
70 schema:name Earth Science Informatics
71 rdf:type schema:Periodical
72 sg:person.010640121063.24 schema:affiliation https://www.grid.ac/institutes/grid.11135.37
73 schema:familyName Cheng
74 schema:givenName Chengqi
75 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010640121063.24
76 rdf:type schema:Person
77 sg:person.011125172473.57 schema:affiliation https://www.grid.ac/institutes/grid.11135.37
78 schema:familyName Pu
79 schema:givenName Guoliang
80 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011125172473.57
81 rdf:type schema:Person
82 sg:pub.10.1007/s10980-007-9173-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030864493
83 https://doi.org/10.1007/s10980-007-9173-8
84 rdf:type schema:CreativeWork
85 sg:pub.10.1007/s11431-011-4549-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1048000832
86 https://doi.org/10.1007/s11431-011-4549-z
87 rdf:type schema:CreativeWork
88 sg:pub.10.1007/s12145-011-0082-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009394585
89 https://doi.org/10.1007/s12145-011-0082-7
90 rdf:type schema:CreativeWork
91 sg:pub.10.1007/s12145-016-0276-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013443038
92 https://doi.org/10.1007/s12145-016-0276-0
93 rdf:type schema:CreativeWork
94 https://doi.org/10.1080/01431160412331291297 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029590258
95 rdf:type schema:CreativeWork
96 https://doi.org/10.3390/geosciences7040128 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099790433
97 rdf:type schema:CreativeWork
98 https://doi.org/10.3390/ijgi4010320 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011846277
99 rdf:type schema:CreativeWork
100 https://doi.org/10.3390/ijgi5090161 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026282493
101 rdf:type schema:CreativeWork
102 https://doi.org/10.3390/ijgi5100173 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011831092
103 rdf:type schema:CreativeWork
104 https://doi.org/10.3390/ijgi6070220 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090776695
105 rdf:type schema:CreativeWork
106 https://www.grid.ac/institutes/grid.11135.37 schema:alternateName Peking University
107 schema:name College of Engineering, Peking University, 100871, Beijing, China
108 Institute of Remote Sensing and GIS, Peking University, 100871, Beijing, China
109 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...