Optical remote-sensing data based research on detecting soil salinity at different depth in an arid-area oasis, Xinjiang, China View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-03

AUTHORS

Hongnan Jiang, Hong Shu

ABSTRACT

This study discusses measures for improving the precision of optical remote-sensing detection of soil salinity and the possibility of soil salinity detection at different depths of 0–10 cm, 10–30 cm and 30–50 cm using optical remote-sensing data, and analyzes the mechanism by which deep-layer soil salinity influences the soil spectrum. The findings show that there is a high and significant correlation between soil-spectral reflectance and soil salinity, and that the correlation between soil-spectral reflectance and soil salinity decreases gradually from the blue band to the shortwave infrared band of ETM + images. The partial least squares regression model is used to estimate soil salinity in the 0–10-cm surface-layer, confirming that the selected soil-salinity-detecting bands of Band 1 and Band 4, the established difference soil salinity index, the derivative of the normalized differential vegetation index, and the deep-layer soil moisture can improve the precision of remote-sensing detection of surface-layer soil salinity. The precise estimation of the 0–10-cm surface-layer soil salinity with variables features an R2 = 0.752, an RMSE = 26.84 g/Kg, and a p = 0.000. There is a strong mediating effect between deep-layer soil salinity, 0–10-cm surface-layer soil salinity, and soil spectral reflectance in the study area; namely, deep-layer soil salinity influences soil spectral reflectance by influencing surface-layer soil salinity. There is a significant and very strong power function relation between 0 and 10-cm surface-layer soil salinity and deep-layer soil salinity. Based on this relationship, this study estimates deep-layer soil salinity using optical remote-sensing images. More... »

PAGES

43-56

Journal

TITLE

Earth Science Informatics

ISSUE

1

VOLUME

12

From Grant

  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s12145-018-0358-2

    DOI

    http://dx.doi.org/10.1007/s12145-018-0358-2

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1106039620


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0503", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Soil Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/05", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Environmental Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Xinjiang University", 
              "id": "https://www.grid.ac/institutes/grid.413254.5", 
              "name": [
                "Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, 129 LuoYu Road, 430079, Wuhan, China", 
                "Institute for Ecology and Environment in Arid Areas, Xinjiang University, 14 Shengli Road, 830046, Urumqi, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Jiang", 
            "givenName": "Hongnan", 
            "id": "sg:person.013054363552.47", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013054363552.47"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Wuhan University", 
              "id": "https://www.grid.ac/institutes/grid.49470.3e", 
              "name": [
                "Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, 129 LuoYu Road, 430079, Wuhan, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Shu", 
            "givenName": "Hong", 
            "id": "sg:person.01372065252.00", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01372065252.00"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/j.rse.2013.01.008", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000319014"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0034-4257(02)00188-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001314273"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0034-4257(02)00188-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001314273"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/03637750903310360", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002834041"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jag.2013.06.002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003993019"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/11263504.2013.862314", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004355564"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0040-5809(92)90031-n", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006752713"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s2095-3119(13)60290-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008266143"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s1002-0160(12)60049-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013755397"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11027-012-9381-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013929303", 
              "https://doi.org/10.1007/s11027-012-9381-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1037/0022-3514.51.6.1173", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024012146"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00477-012-0557-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026044281", 
              "https://doi.org/10.1007/s00477-012-0557-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.rse.2007.02.005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031046104"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.geoderma.2012.11.005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031937946"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.agwat.2004.09.038", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034471866"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jhydrol.2012.12.029", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036192268"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00271-009-0149-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040035906", 
              "https://doi.org/10.1007/s00271-009-0149-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00271-009-0149-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040035906", 
              "https://doi.org/10.1007/s00271-009-0149-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00271-009-0149-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040035906", 
              "https://doi.org/10.1007/s00271-009-0149-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1365-246x.2010.04706.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040902462"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1365-246x.2010.04706.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040902462"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.pce.2010.12.004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043283062"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3390/rs61110813", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045709014"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/2193-2697-2-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047491404", 
              "https://doi.org/10.1186/2193-2697-2-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00267-012-9889-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051699149", 
              "https://doi.org/10.1007/s00267-012-9889-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s1002-0160(13)60029-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052736529"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tgrs.2012.2206817", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061612470"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1177/0193841x8100500502", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1063768556"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1177/0193841x8100500502", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1063768556"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10661-017-5877-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084026170", 
              "https://doi.org/10.1007/s10661-017-5877-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10661-017-5877-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084026170", 
              "https://doi.org/10.1007/s10661-017-5877-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1117/1.jrs.11.016043", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084220403"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1117/1.jrs.11.016043", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084220403"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.procs.2017.03.155", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084534319"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12517-017-3148-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091209696", 
              "https://doi.org/10.1007/s12517-017-3148-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12517-017-3148-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091209696", 
              "https://doi.org/10.1007/s12517-017-3148-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12665-017-6935-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091376786", 
              "https://doi.org/10.1007/s12665-017-6935-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.geoderma.2017.08.022", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091836693"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-03", 
        "datePublishedReg": "2019-03-01", 
        "description": "This study discusses measures for improving the precision of optical remote-sensing detection of soil salinity and the possibility of soil salinity detection at different depths of 0\u201310 cm, 10\u201330 cm and 30\u201350 cm using optical remote-sensing data, and analyzes the mechanism by which deep-layer soil salinity influences the soil spectrum. The findings show that there is a high and significant correlation between soil-spectral reflectance and soil salinity, and that the correlation between soil-spectral reflectance and soil salinity decreases gradually from the blue band to the shortwave infrared band of ETM + images. The partial least squares regression model is used to estimate soil salinity in the 0\u201310-cm surface-layer, confirming that the selected soil-salinity-detecting bands of Band 1 and Band 4, the established difference soil salinity index, the derivative of the normalized differential vegetation index, and the deep-layer soil moisture can improve the precision of remote-sensing detection of surface-layer soil salinity. The precise estimation of the 0\u201310-cm surface-layer soil salinity with variables features an R2 = 0.752, an RMSE = 26.84 g/Kg, and a p = 0.000. There is a strong mediating effect between deep-layer soil salinity, 0\u201310-cm surface-layer soil salinity, and soil spectral reflectance in the study area; namely, deep-layer soil salinity influences soil spectral reflectance by influencing surface-layer soil salinity. There is a significant and very strong power function relation between 0 and 10-cm surface-layer soil salinity and deep-layer soil salinity. Based on this relationship, this study estimates deep-layer soil salinity using optical remote-sensing images.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s12145-018-0358-2", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.5012467", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1049211", 
            "issn": [
              "1865-0473", 
              "1865-0481"
            ], 
            "name": "Earth Science Informatics", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "12"
          }
        ], 
        "name": "Optical remote-sensing data based research on detecting soil salinity at different depth in an arid-area oasis, Xinjiang, China", 
        "pagination": "43-56", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "5b061bf431f582e2e73f38e96c5adb6e510f1df3946d50a3a6af4a23cfcea009"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s12145-018-0358-2"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1106039620"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s12145-018-0358-2", 
          "https://app.dimensions.ai/details/publication/pub.1106039620"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T09:38", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000346_0000000346/records_99832_00000004.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1007%2Fs12145-018-0358-2"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12145-018-0358-2'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12145-018-0358-2'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12145-018-0358-2'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12145-018-0358-2'


     

    This table displays all metadata directly associated to this object as RDF triples.

    172 TRIPLES      21 PREDICATES      57 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s12145-018-0358-2 schema:about anzsrc-for:05
    2 anzsrc-for:0503
    3 schema:author Nbe6bb7563ddf46f19c097d002b9411b6
    4 schema:citation sg:pub.10.1007/s00267-012-9889-3
    5 sg:pub.10.1007/s00271-009-0149-0
    6 sg:pub.10.1007/s00477-012-0557-1
    7 sg:pub.10.1007/s10661-017-5877-7
    8 sg:pub.10.1007/s11027-012-9381-7
    9 sg:pub.10.1007/s12517-017-3148-0
    10 sg:pub.10.1007/s12665-017-6935-8
    11 sg:pub.10.1186/2193-2697-2-4
    12 https://doi.org/10.1016/0040-5809(92)90031-n
    13 https://doi.org/10.1016/j.agwat.2004.09.038
    14 https://doi.org/10.1016/j.geoderma.2012.11.005
    15 https://doi.org/10.1016/j.geoderma.2017.08.022
    16 https://doi.org/10.1016/j.jag.2013.06.002
    17 https://doi.org/10.1016/j.jhydrol.2012.12.029
    18 https://doi.org/10.1016/j.pce.2010.12.004
    19 https://doi.org/10.1016/j.procs.2017.03.155
    20 https://doi.org/10.1016/j.rse.2007.02.005
    21 https://doi.org/10.1016/j.rse.2013.01.008
    22 https://doi.org/10.1016/s0034-4257(02)00188-8
    23 https://doi.org/10.1016/s1002-0160(12)60049-6
    24 https://doi.org/10.1016/s1002-0160(13)60029-6
    25 https://doi.org/10.1016/s2095-3119(13)60290-7
    26 https://doi.org/10.1037/0022-3514.51.6.1173
    27 https://doi.org/10.1080/03637750903310360
    28 https://doi.org/10.1080/11263504.2013.862314
    29 https://doi.org/10.1109/tgrs.2012.2206817
    30 https://doi.org/10.1111/j.1365-246x.2010.04706.x
    31 https://doi.org/10.1117/1.jrs.11.016043
    32 https://doi.org/10.1177/0193841x8100500502
    33 https://doi.org/10.3390/rs61110813
    34 schema:datePublished 2019-03
    35 schema:datePublishedReg 2019-03-01
    36 schema:description This study discusses measures for improving the precision of optical remote-sensing detection of soil salinity and the possibility of soil salinity detection at different depths of 0–10 cm, 10–30 cm and 30–50 cm using optical remote-sensing data, and analyzes the mechanism by which deep-layer soil salinity influences the soil spectrum. The findings show that there is a high and significant correlation between soil-spectral reflectance and soil salinity, and that the correlation between soil-spectral reflectance and soil salinity decreases gradually from the blue band to the shortwave infrared band of ETM + images. The partial least squares regression model is used to estimate soil salinity in the 0–10-cm surface-layer, confirming that the selected soil-salinity-detecting bands of Band 1 and Band 4, the established difference soil salinity index, the derivative of the normalized differential vegetation index, and the deep-layer soil moisture can improve the precision of remote-sensing detection of surface-layer soil salinity. The precise estimation of the 0–10-cm surface-layer soil salinity with variables features an R2 = 0.752, an RMSE = 26.84 g/Kg, and a p = 0.000. There is a strong mediating effect between deep-layer soil salinity, 0–10-cm surface-layer soil salinity, and soil spectral reflectance in the study area; namely, deep-layer soil salinity influences soil spectral reflectance by influencing surface-layer soil salinity. There is a significant and very strong power function relation between 0 and 10-cm surface-layer soil salinity and deep-layer soil salinity. Based on this relationship, this study estimates deep-layer soil salinity using optical remote-sensing images.
    37 schema:genre research_article
    38 schema:inLanguage en
    39 schema:isAccessibleForFree false
    40 schema:isPartOf N5e8b84b668f146798b4069d04841d340
    41 Nf645faf14ba847939dfcd2c5565c8477
    42 sg:journal.1049211
    43 schema:name Optical remote-sensing data based research on detecting soil salinity at different depth in an arid-area oasis, Xinjiang, China
    44 schema:pagination 43-56
    45 schema:productId N1dc962d250904f3b86935eb6193c0143
    46 N2706382bb93d4f0ab03a35f52269d64c
    47 N65ba950ffa70447fa5513435942de1d0
    48 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106039620
    49 https://doi.org/10.1007/s12145-018-0358-2
    50 schema:sdDatePublished 2019-04-11T09:38
    51 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    52 schema:sdPublisher N6c2f7071383c48a891cd7e3428b6f424
    53 schema:url https://link.springer.com/10.1007%2Fs12145-018-0358-2
    54 sgo:license sg:explorer/license/
    55 sgo:sdDataset articles
    56 rdf:type schema:ScholarlyArticle
    57 N1dc962d250904f3b86935eb6193c0143 schema:name readcube_id
    58 schema:value 5b061bf431f582e2e73f38e96c5adb6e510f1df3946d50a3a6af4a23cfcea009
    59 rdf:type schema:PropertyValue
    60 N2706382bb93d4f0ab03a35f52269d64c schema:name doi
    61 schema:value 10.1007/s12145-018-0358-2
    62 rdf:type schema:PropertyValue
    63 N4c94607136a94248aff688aa6687a210 rdf:first sg:person.01372065252.00
    64 rdf:rest rdf:nil
    65 N5e8b84b668f146798b4069d04841d340 schema:volumeNumber 12
    66 rdf:type schema:PublicationVolume
    67 N65ba950ffa70447fa5513435942de1d0 schema:name dimensions_id
    68 schema:value pub.1106039620
    69 rdf:type schema:PropertyValue
    70 N6c2f7071383c48a891cd7e3428b6f424 schema:name Springer Nature - SN SciGraph project
    71 rdf:type schema:Organization
    72 Nbe6bb7563ddf46f19c097d002b9411b6 rdf:first sg:person.013054363552.47
    73 rdf:rest N4c94607136a94248aff688aa6687a210
    74 Nf645faf14ba847939dfcd2c5565c8477 schema:issueNumber 1
    75 rdf:type schema:PublicationIssue
    76 anzsrc-for:05 schema:inDefinedTermSet anzsrc-for:
    77 schema:name Environmental Sciences
    78 rdf:type schema:DefinedTerm
    79 anzsrc-for:0503 schema:inDefinedTermSet anzsrc-for:
    80 schema:name Soil Sciences
    81 rdf:type schema:DefinedTerm
    82 sg:grant.5012467 http://pending.schema.org/fundedItem sg:pub.10.1007/s12145-018-0358-2
    83 rdf:type schema:MonetaryGrant
    84 sg:journal.1049211 schema:issn 1865-0473
    85 1865-0481
    86 schema:name Earth Science Informatics
    87 rdf:type schema:Periodical
    88 sg:person.013054363552.47 schema:affiliation https://www.grid.ac/institutes/grid.413254.5
    89 schema:familyName Jiang
    90 schema:givenName Hongnan
    91 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013054363552.47
    92 rdf:type schema:Person
    93 sg:person.01372065252.00 schema:affiliation https://www.grid.ac/institutes/grid.49470.3e
    94 schema:familyName Shu
    95 schema:givenName Hong
    96 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01372065252.00
    97 rdf:type schema:Person
    98 sg:pub.10.1007/s00267-012-9889-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051699149
    99 https://doi.org/10.1007/s00267-012-9889-3
    100 rdf:type schema:CreativeWork
    101 sg:pub.10.1007/s00271-009-0149-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040035906
    102 https://doi.org/10.1007/s00271-009-0149-0
    103 rdf:type schema:CreativeWork
    104 sg:pub.10.1007/s00477-012-0557-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026044281
    105 https://doi.org/10.1007/s00477-012-0557-1
    106 rdf:type schema:CreativeWork
    107 sg:pub.10.1007/s10661-017-5877-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084026170
    108 https://doi.org/10.1007/s10661-017-5877-7
    109 rdf:type schema:CreativeWork
    110 sg:pub.10.1007/s11027-012-9381-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013929303
    111 https://doi.org/10.1007/s11027-012-9381-7
    112 rdf:type schema:CreativeWork
    113 sg:pub.10.1007/s12517-017-3148-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091209696
    114 https://doi.org/10.1007/s12517-017-3148-0
    115 rdf:type schema:CreativeWork
    116 sg:pub.10.1007/s12665-017-6935-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091376786
    117 https://doi.org/10.1007/s12665-017-6935-8
    118 rdf:type schema:CreativeWork
    119 sg:pub.10.1186/2193-2697-2-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047491404
    120 https://doi.org/10.1186/2193-2697-2-4
    121 rdf:type schema:CreativeWork
    122 https://doi.org/10.1016/0040-5809(92)90031-n schema:sameAs https://app.dimensions.ai/details/publication/pub.1006752713
    123 rdf:type schema:CreativeWork
    124 https://doi.org/10.1016/j.agwat.2004.09.038 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034471866
    125 rdf:type schema:CreativeWork
    126 https://doi.org/10.1016/j.geoderma.2012.11.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031937946
    127 rdf:type schema:CreativeWork
    128 https://doi.org/10.1016/j.geoderma.2017.08.022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091836693
    129 rdf:type schema:CreativeWork
    130 https://doi.org/10.1016/j.jag.2013.06.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003993019
    131 rdf:type schema:CreativeWork
    132 https://doi.org/10.1016/j.jhydrol.2012.12.029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036192268
    133 rdf:type schema:CreativeWork
    134 https://doi.org/10.1016/j.pce.2010.12.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043283062
    135 rdf:type schema:CreativeWork
    136 https://doi.org/10.1016/j.procs.2017.03.155 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084534319
    137 rdf:type schema:CreativeWork
    138 https://doi.org/10.1016/j.rse.2007.02.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031046104
    139 rdf:type schema:CreativeWork
    140 https://doi.org/10.1016/j.rse.2013.01.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000319014
    141 rdf:type schema:CreativeWork
    142 https://doi.org/10.1016/s0034-4257(02)00188-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001314273
    143 rdf:type schema:CreativeWork
    144 https://doi.org/10.1016/s1002-0160(12)60049-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013755397
    145 rdf:type schema:CreativeWork
    146 https://doi.org/10.1016/s1002-0160(13)60029-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052736529
    147 rdf:type schema:CreativeWork
    148 https://doi.org/10.1016/s2095-3119(13)60290-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008266143
    149 rdf:type schema:CreativeWork
    150 https://doi.org/10.1037/0022-3514.51.6.1173 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024012146
    151 rdf:type schema:CreativeWork
    152 https://doi.org/10.1080/03637750903310360 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002834041
    153 rdf:type schema:CreativeWork
    154 https://doi.org/10.1080/11263504.2013.862314 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004355564
    155 rdf:type schema:CreativeWork
    156 https://doi.org/10.1109/tgrs.2012.2206817 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061612470
    157 rdf:type schema:CreativeWork
    158 https://doi.org/10.1111/j.1365-246x.2010.04706.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1040902462
    159 rdf:type schema:CreativeWork
    160 https://doi.org/10.1117/1.jrs.11.016043 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084220403
    161 rdf:type schema:CreativeWork
    162 https://doi.org/10.1177/0193841x8100500502 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063768556
    163 rdf:type schema:CreativeWork
    164 https://doi.org/10.3390/rs61110813 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045709014
    165 rdf:type schema:CreativeWork
    166 https://www.grid.ac/institutes/grid.413254.5 schema:alternateName Xinjiang University
    167 schema:name Institute for Ecology and Environment in Arid Areas, Xinjiang University, 14 Shengli Road, 830046, Urumqi, China
    168 Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, 129 LuoYu Road, 430079, Wuhan, China
    169 rdf:type schema:Organization
    170 https://www.grid.ac/institutes/grid.49470.3e schema:alternateName Wuhan University
    171 schema:name Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, 129 LuoYu Road, 430079, Wuhan, China
    172 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...