Three-dimensional Forest growth simulation in virtual geographic environments View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-03

AUTHORS

Liyu Tang, Xianmin Peng, Chongcheng Chen, Hongyu Huang, Ding Lin

ABSTRACT

Virtual geographic environments related to dynamic processes contribute to a human understanding of the real world. The results of growth simulations provide good estimations of the future status of forests, but they are typically expressed in plain text summaries, tables or static displays, making it difficult to analyse, understand and further apply the forecast data. The objectives of this study were to propose a strategy for integrating a three-dimensional (3D) geographic environment with growth models and to develop a 3D stand visualization software prototype. Forest growth increments were predicted using the growth models, whereas stand dynamics were simulated using detailed tree models to recognize the changes in the branch whorls and height of individual trees. The spatial structure of the stand was represented by linking each tree diameter class to a spatial distribution according to the features of a Voronoi diagram. The stand visualization system VisForest, which allows users to predict increments in the diameter and height of trees, was extended to estimate the number of trees in each diameter class and to visualize many aspects of a forest stand, e.g., individual tree structure, stem diameter at breast height (DBH, i.e., 1.3 m) distribution and height. The software system provides a specialized, intuitive tool for the visualization of a stand, thus facilitating the participation of various stakeholders in management and education. More... »

PAGES

31-41

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s12145-018-0356-4

DOI

http://dx.doi.org/10.1007/s12145-018-0356-4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1105429305


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0806", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information Systems", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Fuzhou University", 
          "id": "https://www.grid.ac/institutes/grid.411604.6", 
          "name": [
            "National Engineering Research Centre of Geospatial Information Technology, Key Laboratory of Spatial Data Mining & Information Sharing of MOE, Fuzhou University, Fuzhou, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tang", 
        "givenName": "Liyu", 
        "id": "sg:person.010163745521.72", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010163745521.72"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Fuzhou University", 
          "id": "https://www.grid.ac/institutes/grid.411604.6", 
          "name": [
            "National Engineering Research Centre of Geospatial Information Technology, Key Laboratory of Spatial Data Mining & Information Sharing of MOE, Fuzhou University, Fuzhou, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Peng", 
        "givenName": "Xianmin", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Fuzhou University", 
          "id": "https://www.grid.ac/institutes/grid.411604.6", 
          "name": [
            "National Engineering Research Centre of Geospatial Information Technology, Key Laboratory of Spatial Data Mining & Information Sharing of MOE, Fuzhou University, Fuzhou, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chen", 
        "givenName": "Chongcheng", 
        "id": "sg:person.0615564033.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0615564033.41"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Fuzhou University", 
          "id": "https://www.grid.ac/institutes/grid.411604.6", 
          "name": [
            "National Engineering Research Centre of Geospatial Information Technology, Key Laboratory of Spatial Data Mining & Information Sharing of MOE, Fuzhou University, Fuzhou, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Huang", 
        "givenName": "Hongyu", 
        "id": "sg:person.012432467765.83", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012432467765.83"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Fuzhou University", 
          "id": "https://www.grid.ac/institutes/grid.411604.6", 
          "name": [
            "National Engineering Research Centre of Geospatial Information Technology, Key Laboratory of Spatial Data Mining & Information Sharing of MOE, Fuzhou University, Fuzhou, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lin", 
        "givenName": "Ding", 
        "id": "sg:person.013747230121.98", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013747230121.98"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.compag.2005.02.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002693585"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ecolmodel.2014.01.026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008895670"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.foreco.2009.04.040", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011219219"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/tgis.12167", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011676236"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/aob/mcm246", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015617298"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/19475683.2015.1099568", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016933468"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.compag.2009.05.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018573812"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1071/fp08077", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021635413"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.foreco.2007.11.035", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023273185"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ecoinf.2015.09.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026109847"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ecoinf.2015.09.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026109847"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ecoinf.2015.09.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026109847"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ecoinf.2015.09.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026109847"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ecolmodel.2005.04.026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029036186"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/378456.378505", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030405018"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.biosystemseng.2014.01.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033006364"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/13658816.2014.977292", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035799708"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ecolmodel.2013.12.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036315612"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1038580326", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4613-8476-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038580326", 
          "https://doi.org/10.1007/978-1-4613-8476-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4613-8476-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038580326", 
          "https://doi.org/10.1007/978-1-4613-8476-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12665-015-4763-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044580503", 
          "https://doi.org/10.1007/s12665-015-4763-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.earscirev.2013.08.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044821643"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/treephys/26.3.337", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045876248"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0378-1127(02)00047-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049329187"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ecolmodel.2012.12.030", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050044743"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ecolmodel.2014.02.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051137894"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s13595-011-0144-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052330397", 
          "https://doi.org/10.1007/s13595-011-0144-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ecolmodel.2009.07.025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052883065"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/38.736469", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061164118"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tvcg.2014.2316001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061814229"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1141911.1141929", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063151954"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5311/josis.2010.1.2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072758243"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1077043847", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/9781118786352.wbieg0448", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084727018"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icsdm.2011.5969053", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095232331"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/17538947.2017.1419452", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101202446"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-03", 
    "datePublishedReg": "2019-03-01", 
    "description": "Virtual geographic environments related to dynamic processes contribute to a human understanding of the real world. The results of growth simulations provide good estimations of the future status of forests, but they are typically expressed in plain text summaries, tables or static displays, making it difficult to analyse, understand and further apply the forecast data. The objectives of this study were to propose a strategy for integrating a three-dimensional (3D) geographic environment with growth models and to develop a 3D stand visualization software prototype. Forest growth increments were predicted using the growth models, whereas stand dynamics were simulated using detailed tree models to recognize the changes in the branch whorls and height of individual trees. The spatial structure of the stand was represented by linking each tree diameter class to a spatial distribution according to the features of a Voronoi diagram. The stand visualization system VisForest, which allows users to predict increments in the diameter and height of trees, was extended to estimate the number of trees in each diameter class and to visualize many aspects of a forest stand, e.g., individual tree structure, stem diameter at breast height (DBH, i.e., 1.3 m) distribution and height. The software system provides a specialized, intuitive tool for the visualization of a stand, thus facilitating the participation of various stakeholders in management and education.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s12145-018-0356-4", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1049211", 
        "issn": [
          "1865-0473", 
          "1865-0481"
        ], 
        "name": "Earth Science Informatics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "12"
      }
    ], 
    "name": "Three-dimensional Forest growth simulation in virtual geographic environments", 
    "pagination": "31-41", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "2328a23b947d67dbd3d86a3e079d563a30a3dce7342e6ae39291745bfe9468c9"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s12145-018-0356-4"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1105429305"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s12145-018-0356-4", 
      "https://app.dimensions.ai/details/publication/pub.1105429305"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T09:40", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000346_0000000346/records_99836_00000004.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs12145-018-0356-4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12145-018-0356-4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12145-018-0356-4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12145-018-0356-4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12145-018-0356-4'


 

This table displays all metadata directly associated to this object as RDF triples.

188 TRIPLES      21 PREDICATES      60 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s12145-018-0356-4 schema:about anzsrc-for:08
2 anzsrc-for:0806
3 schema:author N11faffc317ae41069031e63a3309f7df
4 schema:citation sg:pub.10.1007/978-1-4613-8476-2
5 sg:pub.10.1007/s12665-015-4763-2
6 sg:pub.10.1007/s13595-011-0144-5
7 https://app.dimensions.ai/details/publication/pub.1038580326
8 https://app.dimensions.ai/details/publication/pub.1077043847
9 https://doi.org/10.1002/9781118786352.wbieg0448
10 https://doi.org/10.1016/j.biosystemseng.2014.01.008
11 https://doi.org/10.1016/j.compag.2005.02.003
12 https://doi.org/10.1016/j.compag.2009.05.005
13 https://doi.org/10.1016/j.earscirev.2013.08.001
14 https://doi.org/10.1016/j.ecoinf.2015.09.012
15 https://doi.org/10.1016/j.ecolmodel.2005.04.026
16 https://doi.org/10.1016/j.ecolmodel.2009.07.025
17 https://doi.org/10.1016/j.ecolmodel.2012.12.030
18 https://doi.org/10.1016/j.ecolmodel.2013.12.001
19 https://doi.org/10.1016/j.ecolmodel.2014.01.026
20 https://doi.org/10.1016/j.ecolmodel.2014.02.016
21 https://doi.org/10.1016/j.foreco.2007.11.035
22 https://doi.org/10.1016/j.foreco.2009.04.040
23 https://doi.org/10.1016/s0378-1127(02)00047-6
24 https://doi.org/10.1071/fp08077
25 https://doi.org/10.1080/13658816.2014.977292
26 https://doi.org/10.1080/17538947.2017.1419452
27 https://doi.org/10.1080/19475683.2015.1099568
28 https://doi.org/10.1093/aob/mcm246
29 https://doi.org/10.1093/treephys/26.3.337
30 https://doi.org/10.1109/38.736469
31 https://doi.org/10.1109/icsdm.2011.5969053
32 https://doi.org/10.1109/tvcg.2014.2316001
33 https://doi.org/10.1111/tgis.12167
34 https://doi.org/10.1145/1141911.1141929
35 https://doi.org/10.1145/378456.378505
36 https://doi.org/10.5311/josis.2010.1.2
37 schema:datePublished 2019-03
38 schema:datePublishedReg 2019-03-01
39 schema:description Virtual geographic environments related to dynamic processes contribute to a human understanding of the real world. The results of growth simulations provide good estimations of the future status of forests, but they are typically expressed in plain text summaries, tables or static displays, making it difficult to analyse, understand and further apply the forecast data. The objectives of this study were to propose a strategy for integrating a three-dimensional (3D) geographic environment with growth models and to develop a 3D stand visualization software prototype. Forest growth increments were predicted using the growth models, whereas stand dynamics were simulated using detailed tree models to recognize the changes in the branch whorls and height of individual trees. The spatial structure of the stand was represented by linking each tree diameter class to a spatial distribution according to the features of a Voronoi diagram. The stand visualization system VisForest, which allows users to predict increments in the diameter and height of trees, was extended to estimate the number of trees in each diameter class and to visualize many aspects of a forest stand, e.g., individual tree structure, stem diameter at breast height (DBH, i.e., 1.3 m) distribution and height. The software system provides a specialized, intuitive tool for the visualization of a stand, thus facilitating the participation of various stakeholders in management and education.
40 schema:genre research_article
41 schema:inLanguage en
42 schema:isAccessibleForFree false
43 schema:isPartOf N74a5a7bf08f442c8a5293ffea2ca8e4e
44 Nf5d79396dd754d799ed7379d7b62525d
45 sg:journal.1049211
46 schema:name Three-dimensional Forest growth simulation in virtual geographic environments
47 schema:pagination 31-41
48 schema:productId Naa3f4ed79a814208970139afc1af1683
49 Nc4eddf86935e4eac87f0eb5f7bdb0d4b
50 Nf5bb9d92e9884394b1d46b2da0a12d2e
51 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105429305
52 https://doi.org/10.1007/s12145-018-0356-4
53 schema:sdDatePublished 2019-04-11T09:40
54 schema:sdLicense https://scigraph.springernature.com/explorer/license/
55 schema:sdPublisher Nbf7c93da3feb404cb2534d2e4dfeb356
56 schema:url https://link.springer.com/10.1007%2Fs12145-018-0356-4
57 sgo:license sg:explorer/license/
58 sgo:sdDataset articles
59 rdf:type schema:ScholarlyArticle
60 N11faffc317ae41069031e63a3309f7df rdf:first sg:person.010163745521.72
61 rdf:rest N487a59566a73492abb436010c5b34086
62 N21dc889aa8bc4e899fe87c7c39855986 rdf:first sg:person.0615564033.41
63 rdf:rest N44f9728237d7407d9dbcd18f719ec0e0
64 N32ce312426a74b4bbfd8fe2a33792cfa rdf:first sg:person.013747230121.98
65 rdf:rest rdf:nil
66 N44f9728237d7407d9dbcd18f719ec0e0 rdf:first sg:person.012432467765.83
67 rdf:rest N32ce312426a74b4bbfd8fe2a33792cfa
68 N487a59566a73492abb436010c5b34086 rdf:first N4a7ebc3e9dc747d58698e20c3f014642
69 rdf:rest N21dc889aa8bc4e899fe87c7c39855986
70 N4a7ebc3e9dc747d58698e20c3f014642 schema:affiliation https://www.grid.ac/institutes/grid.411604.6
71 schema:familyName Peng
72 schema:givenName Xianmin
73 rdf:type schema:Person
74 N74a5a7bf08f442c8a5293ffea2ca8e4e schema:issueNumber 1
75 rdf:type schema:PublicationIssue
76 Naa3f4ed79a814208970139afc1af1683 schema:name dimensions_id
77 schema:value pub.1105429305
78 rdf:type schema:PropertyValue
79 Nbf7c93da3feb404cb2534d2e4dfeb356 schema:name Springer Nature - SN SciGraph project
80 rdf:type schema:Organization
81 Nc4eddf86935e4eac87f0eb5f7bdb0d4b schema:name doi
82 schema:value 10.1007/s12145-018-0356-4
83 rdf:type schema:PropertyValue
84 Nf5bb9d92e9884394b1d46b2da0a12d2e schema:name readcube_id
85 schema:value 2328a23b947d67dbd3d86a3e079d563a30a3dce7342e6ae39291745bfe9468c9
86 rdf:type schema:PropertyValue
87 Nf5d79396dd754d799ed7379d7b62525d schema:volumeNumber 12
88 rdf:type schema:PublicationVolume
89 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
90 schema:name Information and Computing Sciences
91 rdf:type schema:DefinedTerm
92 anzsrc-for:0806 schema:inDefinedTermSet anzsrc-for:
93 schema:name Information Systems
94 rdf:type schema:DefinedTerm
95 sg:journal.1049211 schema:issn 1865-0473
96 1865-0481
97 schema:name Earth Science Informatics
98 rdf:type schema:Periodical
99 sg:person.010163745521.72 schema:affiliation https://www.grid.ac/institutes/grid.411604.6
100 schema:familyName Tang
101 schema:givenName Liyu
102 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010163745521.72
103 rdf:type schema:Person
104 sg:person.012432467765.83 schema:affiliation https://www.grid.ac/institutes/grid.411604.6
105 schema:familyName Huang
106 schema:givenName Hongyu
107 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012432467765.83
108 rdf:type schema:Person
109 sg:person.013747230121.98 schema:affiliation https://www.grid.ac/institutes/grid.411604.6
110 schema:familyName Lin
111 schema:givenName Ding
112 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013747230121.98
113 rdf:type schema:Person
114 sg:person.0615564033.41 schema:affiliation https://www.grid.ac/institutes/grid.411604.6
115 schema:familyName Chen
116 schema:givenName Chongcheng
117 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0615564033.41
118 rdf:type schema:Person
119 sg:pub.10.1007/978-1-4613-8476-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038580326
120 https://doi.org/10.1007/978-1-4613-8476-2
121 rdf:type schema:CreativeWork
122 sg:pub.10.1007/s12665-015-4763-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044580503
123 https://doi.org/10.1007/s12665-015-4763-2
124 rdf:type schema:CreativeWork
125 sg:pub.10.1007/s13595-011-0144-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052330397
126 https://doi.org/10.1007/s13595-011-0144-5
127 rdf:type schema:CreativeWork
128 https://app.dimensions.ai/details/publication/pub.1038580326 schema:CreativeWork
129 https://app.dimensions.ai/details/publication/pub.1077043847 schema:CreativeWork
130 https://doi.org/10.1002/9781118786352.wbieg0448 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084727018
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1016/j.biosystemseng.2014.01.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033006364
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1016/j.compag.2005.02.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002693585
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1016/j.compag.2009.05.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018573812
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1016/j.earscirev.2013.08.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044821643
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1016/j.ecoinf.2015.09.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026109847
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1016/j.ecolmodel.2005.04.026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029036186
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1016/j.ecolmodel.2009.07.025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052883065
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1016/j.ecolmodel.2012.12.030 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050044743
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1016/j.ecolmodel.2013.12.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036315612
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1016/j.ecolmodel.2014.01.026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008895670
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1016/j.ecolmodel.2014.02.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051137894
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1016/j.foreco.2007.11.035 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023273185
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1016/j.foreco.2009.04.040 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011219219
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1016/s0378-1127(02)00047-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049329187
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1071/fp08077 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021635413
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1080/13658816.2014.977292 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035799708
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1080/17538947.2017.1419452 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101202446
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1080/19475683.2015.1099568 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016933468
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1093/aob/mcm246 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015617298
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1093/treephys/26.3.337 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045876248
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1109/38.736469 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061164118
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1109/icsdm.2011.5969053 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095232331
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1109/tvcg.2014.2316001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061814229
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1111/tgis.12167 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011676236
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1145/1141911.1141929 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063151954
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1145/378456.378505 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030405018
183 rdf:type schema:CreativeWork
184 https://doi.org/10.5311/josis.2010.1.2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072758243
185 rdf:type schema:CreativeWork
186 https://www.grid.ac/institutes/grid.411604.6 schema:alternateName Fuzhou University
187 schema:name National Engineering Research Centre of Geospatial Information Technology, Key Laboratory of Spatial Data Mining & Information Sharing of MOE, Fuzhou University, Fuzhou, China
188 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...