Ontology type: schema:ScholarlyArticle
2016-11
AUTHORSR. B. Arango, I. Díaz, A. Campos, E. R. Canas, E. F. Combarro
ABSTRACTIn Precision Agriculture one of the basic tasks is the classification of land zones in either arable or non-arable land. Several studies have been conducted using data obtained from soil analysis or local exploration of the parcels. However, sometimes only data from satellite images are available and then the problem not only becomes more challenging but also more interesting to solve because it is much more cost-effective. In this paper, we consider different spectral and thermal bands from the Landsat 8 satellite images corresponding to a vineyard located in Galicia, a region in Northeastern Spain, and apply a range of supervised Machine Learning methods to classify the different land zones. We conclude that an adequate choice of the algorithm parameters together with feature selection techniques can yield a classification that is both highly effective and efficient. More... »
PAGES535-545
http://scigraph.springernature.com/pub.10.1007/s12145-016-0270-6
DOIhttp://dx.doi.org/10.1007/s12145-016-0270-6
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1009317980
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0503",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Soil Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/05",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Environmental Sciences",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"name": [
"SERESCO, Oviedo, Spain"
],
"type": "Organization"
},
"familyName": "Arango",
"givenName": "R. B.",
"id": "sg:person.012621040577.41",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012621040577.41"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "University of Oviedo",
"id": "https://www.grid.ac/institutes/grid.10863.3c",
"name": [
"Department of Computer Science, University of Oviedo, Oviedo, Spain"
],
"type": "Organization"
},
"familyName": "D\u00edaz",
"givenName": "I.",
"id": "sg:person.010242453671.42",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010242453671.42"
],
"type": "Person"
},
{
"affiliation": {
"name": [
"SERESCO, Oviedo, Spain"
],
"type": "Organization"
},
"familyName": "Campos",
"givenName": "A.",
"id": "sg:person.014214001577.41",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014214001577.41"
],
"type": "Person"
},
{
"affiliation": {
"name": [
"Terras Gauda, O Rosal, Spain"
],
"type": "Organization"
},
"familyName": "Canas",
"givenName": "E. R.",
"id": "sg:person.07701251777.89",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07701251777.89"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "University of Oviedo",
"id": "https://www.grid.ac/institutes/grid.10863.3c",
"name": [
"Department of Computer Science, University of Oviedo, Oviedo, Spain"
],
"type": "Organization"
},
"familyName": "Combarro",
"givenName": "E. F.",
"id": "sg:person.014120426453.50",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014120426453.50"
],
"type": "Person"
}
],
"citation": [
{
"id": "https://app.dimensions.ai/details/publication/pub.1001327449",
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-1-4614-6849-3",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1001327449",
"https://doi.org/10.1007/978-1-4614-6849-3"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-1-4614-6849-3",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1001327449",
"https://doi.org/10.1007/978-1-4614-6849-3"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.rse.2003.07.002",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1002152916"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.rse.2003.07.002",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1002152916"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.geoderma.2006.04.019",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1005103648"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/s0034-4257(02)00037-8",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1006179935"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.mcm.2009.10.034",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1006519487"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.eswa.2010.09.161",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1009005001"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.4141/cjss10029",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1010757109"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/s1671-2927(11)60136-3",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1011804853"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/s0034-4257(97)00049-7",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1013556000"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.patrec.2005.10.010",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1013701558"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/0020-0271(71)90051-9",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1015996165"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/s0034-4257(96)00112-5",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1017802574"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/s1537-5110(03)00038-2",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1020075341"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/s1537-5110(03)00038-2",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1020075341"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.jag.2016.01.009",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1020844457"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1080/2150704x.2012.713139",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1020877631"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1117/12.339824",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1021228970"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/s0167-5877(05)80004-2",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1021478710"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1145/505282.505283",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1023316280"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/0034-4257(89)90046-1",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1023427741"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/0034-4257(89)90046-1",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1023427741"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.eswa.2011.08.040",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1024210546"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.eswa.2007.10.005",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1024578924"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.procs.2011.04.173",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1024665921"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.eswa.2014.10.009",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1024815144"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf00994018",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1025150743",
"https://doi.org/10.1007/bf00994018"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.apgeog.2012.06.016",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1026021360"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.patrec.2005.08.011",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1028303129"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.patrec.2005.08.011",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1028303129"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.compag.2012.09.009",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1028911028"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.compag.2006.12.011",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1030726297"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1080/01431160110040323",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1031444258"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/s0304-3800(01)00446-x",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1035041227"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.rse.2011.11.020",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1035116980"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.eswa.2012.02.103",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1035787467"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.compag.2013.09.014",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1036026255"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/s1532-0464(03)00034-0",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1038110420"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/s1532-0464(03)00034-0",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1038110420"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1002/jpln.200700022",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1039088661"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.eswa.2011.04.062",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1042194692"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.eswa.2012.07.009",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1042386109"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.apgeog.2013.07.003",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1045872134"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.compag.2010.10.014",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1046734461"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.eswa.2013.11.034",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1048170887"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1002/asi.10409",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1048193736"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1080/01431160512331314083",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1049567570"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.rse.2007.04.013",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1051748706"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1080/0143116031000114851",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1058294331"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/18.61115",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1061100441"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/36.377946",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1061161245"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/lgrs.2008.2009324",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1061358642"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/mis.2005.49",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1061405828"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/tgrs.2005.848706",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1061609482"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.18637/jss.v028.i05",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1068672403"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.2134/agronj2003.0303",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1068994791"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.2134/agronj2004.0195",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1068995005"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.5120/2932-3883",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1072603819"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/cewit.2011.6163052",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1094207969"
],
"type": "CreativeWork"
}
],
"datePublished": "2016-11",
"datePublishedReg": "2016-11-01",
"description": "In Precision Agriculture one of the basic tasks is the classification of land zones in either arable or non-arable land. Several studies have been conducted using data obtained from soil analysis or local exploration of the parcels. However, sometimes only data from satellite images are available and then the problem not only becomes more challenging but also more interesting to solve because it is much more cost-effective. In this paper, we consider different spectral and thermal bands from the Landsat 8 satellite images corresponding to a vineyard located in Galicia, a region in Northeastern Spain, and apply a range of supervised Machine Learning methods to classify the different land zones. We conclude that an adequate choice of the algorithm parameters together with feature selection techniques can yield a classification that is both highly effective and efficient.",
"genre": "research_article",
"id": "sg:pub.10.1007/s12145-016-0270-6",
"inLanguage": [
"en"
],
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1049211",
"issn": [
"1865-0473",
"1865-0481"
],
"name": "Earth Science Informatics",
"type": "Periodical"
},
{
"issueNumber": "4",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "9"
}
],
"name": "Automatic arable land detection with supervised machine learning",
"pagination": "535-545",
"productId": [
{
"name": "readcube_id",
"type": "PropertyValue",
"value": [
"2c63398e85999269d2b145a0ed6e9762372e00ad40cf46f110bd553ca99cf79b"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s12145-016-0270-6"
]
},
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1009317980"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s12145-016-0270-6",
"https://app.dimensions.ai/details/publication/pub.1009317980"
],
"sdDataset": "articles",
"sdDatePublished": "2019-04-11T12:23",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000362_0000000362/records_87094_00000000.jsonl",
"type": "ScholarlyArticle",
"url": "https://link.springer.com/10.1007%2Fs12145-016-0270-6"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12145-016-0270-6'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12145-016-0270-6'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12145-016-0270-6'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12145-016-0270-6'
This table displays all metadata directly associated to this object as RDF triples.
261 TRIPLES
21 PREDICATES
82 URIs
19 LITERALS
7 BLANK NODES